L3 STUE UDS et 1A EOST Ondes sismiques Contrôle continu 15 mars 2011 (sans document)

PARTIE COURS

- I) Polarisation des ondes P, SV, SH Le déplacement des particules d'une onde se propageant dans la direction Ox est f(x/V-t).
- 1) Ecrire l'expression des composantes u_x, u_y, u_z du déplacement des particules dans le cas où il s'agit d'une onde P, d'une onde SV, d'une onde SH.
- 2) Mêmes questions si l'onde se propage sous un angle d'incidence θ par rapport à la verticale dans le plan x,z.

L'enregistrement de l'onde P du séisme du Japon de magnitude 9 à une station sismologique située à Tokyo, à une distance de 350 km, montre les valeurs d'amplitude maximum du déplacement des particules suivantes sur les trois composantes Nord-Sud (x), Est-Ouest(y) et verticale : $U_x = 0.6$ m, $U_y = 0.4$ m, $U_z = 0.4$ m.

3) Calculer la valeur maximum U du déplacement des particules dans la direction de propagation \mathbf{e} et les angles α , β , et γ que fait \mathbf{e} avec les axes x, y, et z. En déduire l'azimut de la direction d'arrivée de l'onde par rapport au Nord.

II) Loi de Snell-Descartes en 3D

On considère une interface plane 3D entre deux milieux homogènes de vitesse V_1 et V_2 . La normale à l'interface, orientée vers le milieu de vitesse V_1 , est notée $\bf n$. Un rayon sismique se propage dans le milieu 1 dans la direction $\bf e$. L'angle d'incidence mesuré par rapport à la normale $\bf n$ est θ_1 .

- 4) Etablir l'expression de la direction **e**₁ du rayon réfléchi dans le milieu 1 en fonction de **e** et **n**.
- 5) Etablir l'expression de la direction $\mathbf{e_2}$ du rayon transmis dans le milieu 2 en fonction de \mathbf{e} , \mathbf{n} , V_1 et V_2 .
- III) Equation eikonale Etablir l'équation eikonale pour les surfaces d'onde T(x,y,z)
- 6) En écrivant la relation géométrique que doivent vérifier les vitesses apparentes dans les trois directions x, y et z.
- 7) En cherchant une solution à l'équation des ondes $\Delta \varphi = (1/V(x,y,z)^2) \partial^2 \varphi / \partial t^2$ sous la forme $\varphi = A(x,y,z) e^{i\omega(T(x,y,z)-t)}$ et en supposant que ω est grand (c'est à dire en considérant uniquement les termes en ω^2).