EOST - UDS 2^{ère} année EOST Contrôle d'imagerie sismique du 7 mai 2018 10h30 - 12h30 Sans document

On s'intéresse à la migration d'une coupe de sismique réflexion p(x,t) acquise avec des couples source-récepteur confondus.

I) La vitesse $V_0 = 1000$ m/s est constante. Les temps sont simples : $z = V_0 t$ pour un trajet vertical.

La figure 1A montre une coupe sismique p(x,t) à déport nul comportant :

- a) une réflexion horizontale à $t_0 = 1$ s allant de $x_0 = 1000$ m à $x_m = 3000$ m
- b) une réflexion pentée allant de l'origine à $x_1 = 2000 \text{ m}$, $t_1 = 1.414 \text{ s}$
- c) une hyperbole de diffraction enregistrée de x = 0, $t_1 = 1.414$ s à $x_2 = 2732$ m , $t_2 = 2$ s

La figure 1B montre la migration de la réflexion horizontale a).

- 1) Déterminer le pendage α du réflecteur correspondant à la réflexion b), les coordonnées x_1 , z_1 de l'extrémité de ce réflecteur et représenter le réflecteur sur la figure 1B.
- 2) Déterminer les coordonnées x_d, z_d du point diffractant correspondant à l'hyperbole c).
- 3) Dessiner les 3 rayons diffractés issus de x_d , z_d émergeant en x_0 , x_1 et x_2 et les rayons réfléchis issus des extrémités des réflecteurs. Pour chacun de ces rayons, indiquer l'angle d'incidence par rapport à la verticale et vérifier que les temps de trajet sont ceux indiqués sur la figure 1A.

La figure 1C montre la TF2D $P(k_x, \omega)$ des réflexions de la figure 1A. Les coordonnées sont $c_x = k_x/2\pi$ en m⁻¹ et $f = \omega/2\pi$ en Hz.

- 4) Vérifier que les pentes sur la figure 1C correspondent à celles des réflexions de la figure 1A.
- 5) Déterminer et dessiner les pentes limites de l'éventail de pentes possibles pour des réflexions correspondant à des réflecteurs de pendage -90° à 90° dans le milieu de vitesse V₀.
- 6) Déterminer et dessiner la pente correspondant à celle en x = 0 et x = 2732 m pour l'hyperbole de la figure 1A.

La figure 1D correspond à la TF2D $P(k_x, k_z)$ du réflecteur horizontal de la figure 1B. Les coordonnées sont $c_x = k_x/2\pi$ et $c_z = k_z/2\pi$ en m⁻¹

- 7) Tracer la droite correspondant au réflecteur penté de la figure 1B en indiquant quelle est sa pente.
- 8) Tracer le lieu des diffractions (correspondant à tous les pendages entre -90° et 90°) pour une fréquence $f_0 = 50$ Hz.
- 9) Dans la migration de Stolt, comment la valeur de $P(cx_0, f_0)$ encadrée par un carré sur la figure 1C est-elle placée dans le plan (c_x, c_z) ? Indiquer son positionnement par un carré sur la figure 1D.

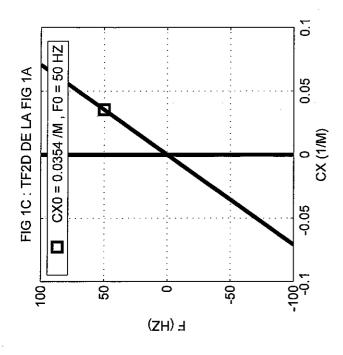
Sur la figure 1C, les bornes $f_m = 100 \text{ Hz}$, $c_{xm} = 0.1 \text{ m}^{-1}$ correspondent aux valeurs de Nyquist.

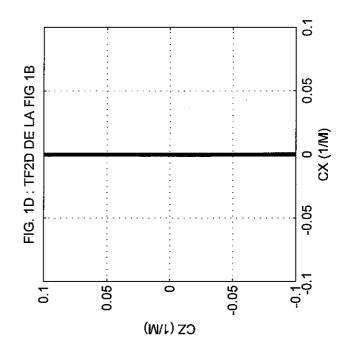
10) Quels sont les pas d'échantillonnage Δt et Δx ?

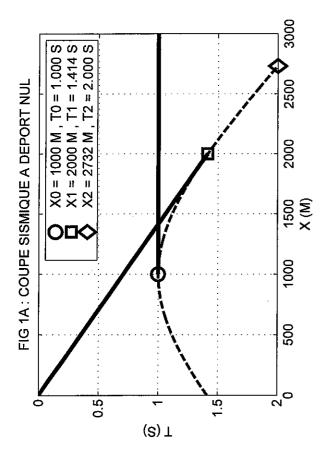
La figure 2 compare les TF2D obtenues avec le pas Δx de la figure 1 (fig 2A) et celle avec un pas $2\Delta x$ (fig 2B)

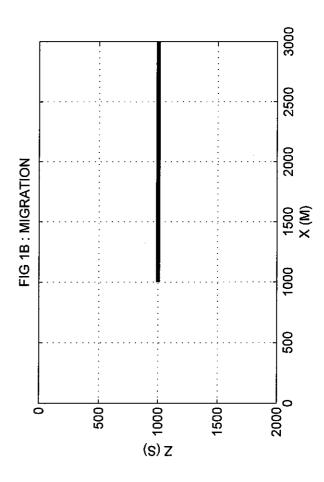
- 11) Dans le cas où le pas est $2\Delta x$, compléter la figure 2B en tenant compte de l'aliasing spatial.
- 12) Déterminer la valeur de cx_2 produite par l'aliasing spatial pour le point cx_1 , f_1 encadré par un carré sur la figure 2A. Placer la sur la figure 2B.
- 13) A quel pendage α_2 faux correspond cette valeur cx_2 ? Comment l'onde plane de fréquence f_1 apparait-elle sur la section migrée ?
- II) La vitesse sous les réflecteurs de la figure 1 est $V_1 = 1500$ m/s. Elle reste $V_0 = 1000$ m/s au-dessus.

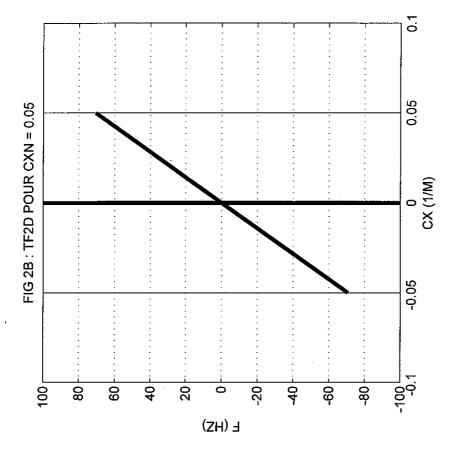
La figure 3A montre deux réflexions à la base de la couche de vitesse V_1 :

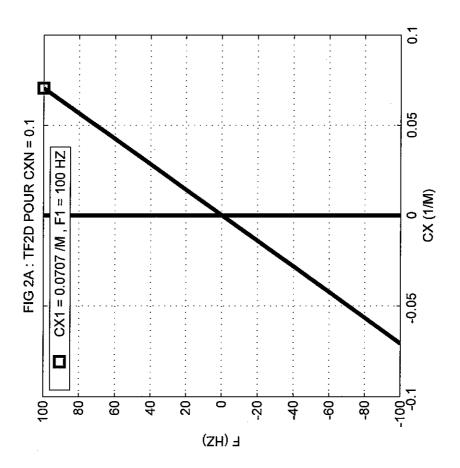

- d) une réflexion horizontale à $t_3 = 1.5$ s allant de $x_0 = 1000$ m à $x_m = 3000$ m
- e) une réflexion pentée allant de x=0, $t_4=1.167$ s à $x_5=1303$ m , $t_5=1.545$ s ainsi qu'une diffraction f) présentant une triplication entre x=1000 et $x_5=1303$ m

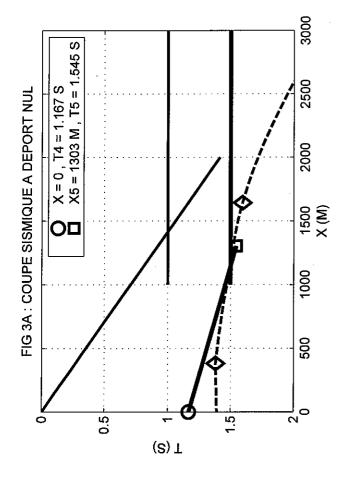

La figure 3B montre la migration de la réflexion horizontale d)

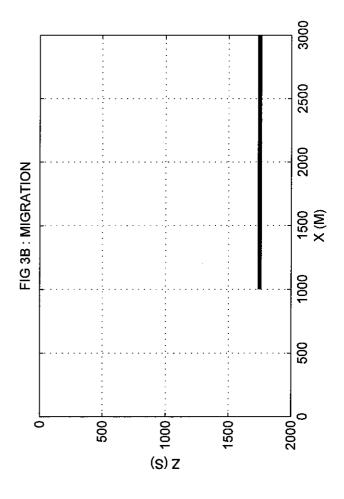

- 14) Vérifier que la profondeur $z_3 = 1750$ m du réflecteur correspondant à la réflexion d) est juste.
- 15) Vérifier que la pente de la réflexion e) est celle correspondant à un rayon vertical dans le milieu de vitesse V₁ qui se réfracte à l'interface b).
- 16) Vérifier que le temps t_4 correspond à un rayon vertical entre la surface et la profondeur $z_3 = 1750$ m dans le milieu de vitesse V_1
- 17) En déduire que la réflexion pentée e) correspond à un réflecteur horizontal à la profondeur z_3 entre x = 0 et x = 1000 m.
- 18) La diffraction f) provient du point x = 1000, z = 1750. Expliquer pourquoi elle présente une triplication (considérer le rayon diffracté vertical réfracté par les réflecteurs a) et b)
- 19) Les losanges sur la diffraction correspondent aux rayons diffractés sous l'incidence +-25° par rapport à la verticale. Expliquer pourquoi les temps sont différents en dessinant les rayons correspondant à ces trajets sur la figure 3B (ne pas faire le calcul exact du tracé de rayon).


Le prolongement vers le bas du champ d'onde réfléchi à la profondeur z = 500 m est $P(x, \omega, z = 500)$.


- 20) Exprimer $P(x, \omega, z = 501)$ selon la méthode de migration phase-shift + correction.
- 21) Ecrire le développement à 15° de la relation de dispersion $k_z(k_x, \omega)$ pour les ondes montantes et expliquer comment elle permet de migrer une section sismique quand la vitesse varie en fonction de x et z.







·	7. 7.			
		i.	4	
				·
			N.	
•				
·				
			•	
			•	