JMM ex EOST

Seismic : Waves - Imaging - Processing - Propagation - Applications

Elastic waves : Characteristics - Elasticity - Wave equations - Plane waves - Spherical waves
Geometrical seismics : Wavefronts and rays - Point source and head wave - V(z) - V(x,y,z)
Reflection-transmission : Continuity - SH - P/SV at free surface - P/SV at interface - Approximations
Guided waves : Rayleigh by free surface and Stoneley by interface - Love and Rayleigh in layer - Group velocity - Love in stratification
Elastic waves + : Cylindrical waves - P and S waves from point force - Anisotropy - Attenuation - Fluid saturation
Reflection-transmission + : Velocity gradient - Layer and stratification - Seismic monitoring - Cyclical stratification - Reflection-transmission relations - Wavy surface
Documents : Figures, programs, animations - Quizs - Books and links

Introduction

Seismic waves are elastic waves that propagate through the Earth. To get acquainted with the way they propagate, visit the following sites :

Russel D., Acoustics Animations : Longitudinal and Transverse Wave Motion
The site illustrates the 1D propagation of longitudinal and transverse harmonic waves as well as Rayleigh waves guided by a free surface.

Baker S.A. and Wysession M.E., Seismic shear wave propagation : a synthetic animation
Animations of the propagation and reflection of wave fronts in the Earth's mantle, and examples of ray tracing and recordings.

Tanimoto T., Southern California wavefield reconstruction
Visualisation of the propagation of wave fields recorded by a dense array of seismic stations.

Characteristics

Seismic waves propagate as undulations (λ = VT), move particles around their equilibrium positions, strain et stress the elastic medium of propagation. Physical quantities involved in the propagation and their magnitude range in geophysics are the following (vectors are in bold).

quantityunitnotationcomponentsmagnitude range
wavelength m λ . 10-3 m (grains in rocks) - 107 m (size of the Earth)
period
frequency
angular frequency
s
Hz
rad/s
T
f = 1/T
ω = 2πf
. 106 Hz (ultrasonic waves on rock samples) - 10-3 Hz (free oscillations of the Earth)
propagation velocities
P and S waves
m/s VP
VS
stratification sedimentaire 102 m/s (VS in soils) - 104 m/s (VP in the mantle)
VP/VS = 1.7 in consolidated rocks
density
impedances
kg/m3
kg/m2/s
ρ
I = ρV
103 kg/m3 (water) - 104 kg/m3 (Earth's core)
particle motion m u ux , uy , uz U : 1 m (motion on a fault) - 10-8m (ambient noise)
particle velocity m/s u/∂t ∂ux/∂t , ∂uy/∂t , ∂uz/∂t U/T
particle acceleration m/s2 2u/∂t2 2ux/∂t2 , ∂2uy/∂t2 , ∂2uz/∂t2 U/T2 : 10 m/s2≈1g (at the epicenters of large earthquakes) - 10-11m/s2 (free oscillations of the Earth)
strains . ε εxx , εyy , εzz
εxy , εyz , εzx
U/λ : 10-6
stresses Pa σ σxx , σyy , σzz
σxy , σyz , σzx
ρV2U/λ = IU/T : 104 - 1 Pa (pressure recorded in water in seismic reflection experiments, f = 10-100Hz)
direction of propagation . e ex , ey , ez
sinθ , 0 , cosθ
seismic sources emit in wide angular ranges
wave vector m-1 k = (2π/λ)e kx , ky , kz characterizes an harmonic plane wave wavelength and direction of propagation
quality factor . Q . ∞ - 10 (unconsolidated sediments)

Linear isotropic elasticity

Rocks are springs. Strains due seismic waves are small enough (except close to sources) for stresses to be proportional to strains. The coefficients of proportionality are the elastic moduli. An isotropic medium (behaviour independant of the orientation of applied stresses) is characterized by two elastic moduli. Uniaxial compression involves the Young modulus and the Poisson coefficient of a rock sample. Lamé coefficients λ and μ are used to characterize any states of stress and strain. The bulk modulus K is the ratio of mean pressure to volumetric strain.

. elastic modulus dilatation shear volumetric
strain . εxx = ∂ux/∂x εxy = (∂ux/∂y+∂uy/∂x)/2 divu = εxxyyzz
uniaxial compression Young modulus E
Poisson coefficient ν
σxx = Eεxx
εyy = -νεxx
. divu = (1-2ν)εxx
stress-strain relation coef. Lamé λ , μ
bulk modulus K
σxx = λdivu+2μεxx σxy = 2μεxy divu = (σxxyyzz)/3K
relationships among moduli E = 1010 - 1011 Pa
ν = 0.2 - 0.4 (rocks) ; 0.5 (water)
λ = Eν/((1+ν)(1-2ν)) μ = E/(2(1+ν)) K = λ+2μ/3 = E/(3(1-2ν))

Values of elastic moduli et densities for air, water and some minerals are the following :

air water ice clays calcite
CaCO3
quartz
SiO2
olivine
(Mg,Fe)SiO4
K (GPa) 0.0001 2.4 8.4 25 70 37 130
μ (GPa) 0 0 3.6 9 29 44 80
ρ (kg/m3) 1 1000 920 2550 2700 2700 3320

In cylindrical coordinates (r,θ,z), the strain and stress components are :

strain εrr = ∂ur/∂r εθθ = (1/r)(ur+∂uθ/∂θ) εzz = ∂uz/∂z εzr = (∂ur/∂z+∂uz/∂r)/2 ε = ((1/r)(∂ur/∂θ-uθ)+∂uθ/∂r)/2 εθz = ((1/r)∂uz/∂θ+∂uθ/∂z)/2
stress σrr = λdivu+2μεrr σθθ = λdivu+2μεθθ σzz = λdivu+2μεzz σzr = 2μεzr σ = 2με σθz = 2μεθz

with divu = εrrθθzz = (1/r)(∂(rur)/∂r+∂uθ/∂θ)+∂uz/∂z

Elastic wave equations in an homogeneous isotropic medium

Two kinds of waves propagate in an homogeneous isotropic medium with distinct propagation velocities. Compressional waves, called also P waves, have a longitudinal polarization (the particle motion is colinear with the direction of propagation). They propagate at the highest velocity. They are equivalent for elastic media to acoustic waves (sounds) propagating in air and water. Shear waves, called also S waves, have a transverse polarization (the particle motion is in a plane orthogonal to the direction of propagation). They propagate only in elastic media that can be sheared, not in acoustic media. They propagate more slowly than P waves. For compacted rocks (λ ≈ μ or ν ≈ 0.25), VP/VS ≈ 1.7. For uncompacted rocks, VP/VS can be much larger (> 4). Mathematically, the correct polarization of the waves is automatically fulfilled by writing the particle motion as the gradient of a scalar potential φ for P waves, or as the curl of a vector potential ψ for S waves.

Compressional waves1D longitudinal waves3D acoustic wavesP waves
particle motion ux(x,t) u = gradφ(x,t) u = gradφ(x,t)
strains εxx = ∂ux/∂x divu = Δφ εxx = ∂2φ/∂x2 , εyy , εzz
εxy = ∂2φ/∂x∂y , εyz , εzx
stresses σxx = E∂ux/∂x p = -Kdivu σxx = λΔφ+2μ∂2φ/∂x2 , σyy , σzz
σxy = 2μ∂2φ/∂x∂y , σyz , σzx
equilibrium equations ρ∂2ux/∂t2 = ∂σxx/∂x ρ∂2u/∂t2 = -gradp ρ∂2ux/∂t2 = ∂σxx/∂x+∂σxy/∂y+∂σxz/∂z
ρ∂/∂x(∂2φ/∂t2) = (λ+2μ)∂/∂x(Δφ)
ρgrad(∂2φ/∂t2) = (λ+2μ)grad(Δφ)
wave equations 2ux/∂t2 = VL22ux/∂x2 2p/∂t2 = VA2Δp 2φ/∂t2 = VP2Δφ
propagation velocity VL2 = E/ρ VA2 = K/ρ VP2 = (λ+2μ)/ρ

For S waves propagating in a vertical plane (it is the case when the propagation velocity is constant or when it depends only on depth, as in a horizontally stratified medium), it is convenient to distinguish two types of transverse polarizations. SH waves have an horizontal polarization orthogonal to the propagation plane : the particle motion has a single non zero component. SV waves have a transverse polarization within the propagation plane : the two non zero components of the particle motion are obtained from a vector potential with a single non-zero component, the one that is orthogonal to the propagation plane.

Shear waves (divu = 0)1D transverse waveSH waves (polarization ⊥ propagation plane)SV waves (polarization within the propagation plane)
particle motion uy(x,t) uy(x,z,t) u(x,z,t) = curlψy(x,z,t)
ux = -∂ψy/∂z , uz = ∂ψy/∂x
strains εxy = (1/2)∂uy/∂x εxy = (1/2)∂uy/∂x , εyz εxx = -∂2ψy/∂z∂x = -εzz
εxz = (-∂2ψy/∂z2+∂2ψy/∂x2)/2
stresses σxy = μ∂uy/∂x σxy = μ∂uy/∂x , σyz σxx = -2μ∂2ψy/∂z∂x = -σzz
σxz = μ(-∂2ψy/∂z2+∂2ψy/∂x2)
equilibrium equations ρ∂2uy/∂t2 = ∂σxy/∂x ρ∂2uy/∂t2 = ∂σxy/∂x+∂σyz/∂z ρ∂2ux/∂t2 = ∂σxx/∂x+∂σxz/∂z
ρ∂/∂z(∂2ψy/∂t2) = μ∂/∂z(∂2ψy/∂x2+∂2ψy/∂z2)
wave equations 2uy/∂t2 = VS22uy/∂x2 2uy/∂t2 = VS2Δuy 2ψy/∂t2 = VS2Δψy
propagation velocity VS2 = μ/ρ VS2 = μ/ρ VS2 = μ/ρ

Values of propagation velocities, Poisson coefficients and densities for some sedimentary and crystalline rocks are the following :

unconsolidated sandstoneconsolidated sandstone limestone granite basalt granulite dunite
VP (km/s) 2.7 4.1 4.6 6.2 5.9 7.0 8.3
VS (km/s) 1.4 2.4 2.4 3.7 3.2 3.8 4.8
ν = (VP2/VS2-2)/(2VP2/VS2-2) 0.32 0.24 0.310.22 0.29 0.29 0.25
ρ (kg/m3) 2100 2400 2400 2650 2880 3000 3300

Plane waves

A plane wave propagates in a direction e with a velocity VP or VS. The sign of the components of e determines the way the wave propagates in the three directions x, y and z (i.e. towards positive or negative x, y and z). The wave equation does not say anything about the solution of the equation, except its phase. A plane harmonic wave corresponds to the choice of a sinusoidal function for the solution, a period T. It is easy to verify that the polarization of the P wave is longitudinal (u // e), and of the S wave transverse (ue).

1D waveP wavesS waves
u→ = u(x/V-t)
u← = u(-x/V-t)
φ(e.x/VP-t)
ulongitudinal = gradφ = (e/VP)φ'
ψ(e.x/VS-t)
utransverse = curlψ = (e/VS)∧ψ'
harmonic case : u = Ueiω(x/V-t) = Uei2π(x/λ-t/T) = Uei(kx-ωt)
u→ : k = ω/V
u← : k = -ω/V
φ = Φei(k.x-ωt) , k = (ω/VP)e
u = ikΦei(k.x-ωt)
ψ = Ψei(k.x-ωt) , k = (ω/VS)e
u = ik∧Ψei(k.x-ωt)

For harmonic waves ∂φ/∂x = ikxφ , ∂φ/∂t = -iωφ . The wave equation becomes the dispersion relation : ω2 = (kx2+ky2+kz2)V2 . It is a sphere of radius 1/V in the coordinates (kx/ω , ky/ω , kz/ω). This is because in a homogeneous isotropic medium, the propagation velocity is the same in all propagation directions.
An harmonic wave fills the space with periodic oscillations. If one looks at it or records it along its propagation direction e, one sees its true wavelength λ = 2π/k. Along a different direction e', one sees an apparent wavelength larger than the true wavelength : λae' = λ/cos(angle(e,e')). Along the x,y,z axes, one sees the apparent wavelengths λx = 2π/kx , λy = 2π/ky , λz = 2π/kz.

polarisation psvsh - déplacement P - déplacement SV - déplacement SH
ondePS.m

Spherical waves

Spherical P waves due to a point compressional source with spherical symmetry are solutions of a 1D wave equation in terms of (rφ(r)). The radial particle motion has two terms : one in 1/r, dominant far from the source, and one in 1/r2, dominant near the source. For a harmonic wave, the boundary between the far and the near field is defined by the value of kr, i.e. by the ratio r/λ.

2(rφ)/∂t2 = V22(rφ)/∂r2 particle motion near/far field
φ = (A/r)f(±r/V-t) u = (A/r)er(-f/r±f'/V) .
φ = (A/r)ei(kr-ωt) u = (A/r)er(ik-1/r)ei(kr-ωt) kr>>1 u = (ikA/r)erei(kr-ωt)
kr<<1 u = (-A/r2)erei(kr-ωt)
A = -U0r02 for a compressional source with radius r0<<λ

Δφ(r) = (1/r)∂2(rφ)/∂r2 , divr = ∂x/∂x+∂y/∂y+∂z/∂z = 3 , diver = div(r/r) = grad(1/r).r+divr/r = 2/r

Wavefronts and rays in an homogeneous isotropic medium

The propagation of a wave from a point M reached by the wave at time t is in a direction e at the propagation velocity V. A wavefront corresponds to the surface T(x) on which the perturbation is localized at time t. Rays represent the paths along wich the wave advances with the propagation velocity of the medium. In a homogeneous isotropic medium, the rays are straight lines orthogonal to the wavefronts. A wavefront sweeps along a direction e' different from the propagation direction e with an apparent velocity Vae' larger than the propagation velocity : Vae' = V/cos(angle(e,e')). Apparent velocities in three orthogonal directions are geometrically linked by the eikonal equation. The Snell-Descartes law of reflection and transmission expresses the equality of the apparent velocities of the incident, reflected and transmitted wavefronts along the interface between two homogeneous media, thus allowing continuity of displacements and stresses across the interface when the waves sweep the interface.

. wavefront equation inverse of apparent velocities along axes eikonal equation : Pythagore for waves
plane T(x) = e.x/V gradT = e/V e.e=1
gradT.gradT = (∂T/∂x)2+(∂T/∂y)2+(∂T/∂z)2 = 1/V2
(1/Vax)2+(1/Vay)2+(1/Vaz)2 = 1/V2
spherical T(x) = r/V gradT = er/V
any surface T(x) gradT = eM/V

The propagation of wavefronts obeys Huygens principle : the wavefront at time t+dt is the envelop of spherical wavelets of radii Vdt, centered on the wavefront at time t.
The geometry of rays obeys Fermat principle : the traveltime along the ray is stationary relative to any perturbation of the ray geometry.
These two principles illustrate how a wave finds its direction propagation : it tries them all and chooses those where constructive interferences occur between neighbouring paths. They can also be numerically implemented to determine the rays geometry of the rays in nonhomogeneous media.

Point source at a distance d from a plane interface : direct, reflected and head waves

A spherical wavefont incident on a plane interface generates a reflected spherical wave and a transmitted (non-spherical) wave. If the velocity increases across the interface (V2>V1), it is only the part of the incident spherical wave that corresponds to incidence angles less than the critical incidence θc that is transmitted. The part corresponding to incidence angles larger than the critical incidence is totally reflected. The transmitted wavefront, initially dragged by the incident wavefront along the interface, propagates horizontally under the interface at the velocity V2 as soon as θ2 reaches 90°. Since V2 is larger than the apparent velocity of the incident and reflected waves at incidences θ1c, the transmitted wave is in advance relative to the incident wave. It produces a diffracted wave, called head wave, that travels at the constant incidence angle θc in the medium 1. The head wave is the "wake" in the medium 1 of the transmitted wave. Its wavefront has a conical shape.
For a non dipping interface parallel to the recording surface, the apparent velocity of the head wave at the surface is the propagation velocity V2 of the transmitted wave along the interface.
For a dipping interface making an angle α with the recording surface, the apparent velocity of the head wave at the surface is different if the receivers are located up-dip (Vau = V1/sin(θc-α)) or down-dip (Vad = V1/sin(θc+α)) relative to the point source. By measuring the up-dip and down-dip apparent velocities in reverse experiments, it is possible to determine V2 and α.

Traveltime curves T(X) of direct, reflected and head waves for source-receiver offset SR=X and homogeneous media of velocity V1 and V2
dip α direct wave reflected wave
total reflection for incidence θ1c
head wave (only if V2>V1)
critical incidence θc : sinθc = V1/V2
interface horizontale
direco.m
T = X/V1 T = (4d2+X2)½/V1 critical distance : Xc = 2dtgθc

apparent horizontal et vertical velocities : Vax = V1/sinθc = V2 ; Vaz = V1/cosθc

traveltime : T = X/Vax+2d/Vaz = X/V2+2dcosθc/V1

interface pentée T = X/V1 virtual source symmetrical of the source with respect to interface
xv = 2dsinα ; zv = 2dcosα

T = (4(dcosα)2+(X±2dsinα)2)½/V1
+ for receivers located downdip of the source
- for receivers located updip of the source

critical distance (triangle virtual source, vertical projection of VS on surface, receiver) :
Xc = 2d(cosαtg(θc±α)-±sinα) = 2dsinθ/cos(θ±α)

apparent velocities along and orthogonally to interface :
V = V1/sinθc = V2 ; Va⊥α = V1/cosθc

distances along and orthogonally to interface :
xα = Xcosα ; d⊥α = 2d±Xsinα

traveltime : T = xα/V+d⊥α/Va⊥α
T = Xcosα/V2+(2d±Xsinα)cosθc/V1 = Xsin(θc±α)/V1+2dcosθc/V1

If the source-receiver direction is not parallel to the dip azimuth, the propagation occurs in the plane that is orthogonal to the interface and that includes the SR line. α is the apparent dip in the propagation plane. It is related to the true dip αtrue by the equation : sinα = sin(αtrue)cos(azimuth(RS)-azimuth(dip)).

In the elastic case, converted waves have to be taken into account. Here are the figures drawn by Cagniard in 1939 in the case where VP2>VS2>VP1>VS1 :
ondes coniques converties

For a point source located on the free surface of a layer having a thickness d above a half-space, the multiple reflections between the free surface and the interface generate reverberations (see also this quiz illustrating how these reverberations give rise to guided waves).

Ocean Acoustics Library shows an animation of the propagation of direct, reflected, transmitted and head waves that illustrates the physics of the interaction of the spherical wave with a plane interface. It includes the evanescent wave in the rapid medium created by the incident wave at incidences corresponding to total reflection.

Heelan P.A., 1953, On the theory of head waves
Mitchell J.F. and R.J. Bolander, 1986, Structural interpretation using refraction velocities from marine seismic surveys show a nice recording at sea that can be used to determine the velocity V1 of water, the velocity V2 and tickness d of a sedimentary layer, and the velocity V3 beneath this layer from direct and head waves. The reflected wavefield is unclear because of reverberations in the water layer. A clear reflection on a dipping interface is apparent on the lower part of the record.
point de tir

Allen, R., Fratta D., Introduction to applied geophysics, offer detailed lecture notes on the use of head waves in the seismic refraction method.

Rays, distances and times of propagation for V(z) - VRMS

If the propagation velocity depends only on depth (stratified medium with horizontal interfaces or vertical velocity gradient), the geometry of the rays is determined by Snell's law : the ray parameter p, inverse of the horizontal apparent velocity (also called horizontal slowness), is constant. The incidence angle θ(z) of the ray relative to the vertical (which is the common normal to all interfaces or isovelocity curves) increases or decreases with increases or decreases in velocity.
The horizontal distance X(p) travelled along a ray and the traveltime T(p) are expressed as a function of the parameter p by summing over depth intervals corresponding to layer thicknesses in a stratified medium.
It is also useful to express τ(p) = T(p)-pX(p), which represents the vertical traveltime in the medium at the apparent vertical velocities corresponding to the parameter p.
In a medium with a velocity gradient, the discrete summation is replaced by an integration over infinitesimal depth intervals dz.
If the velocity gradient a is a constant (V(z) = V0+az), the rays are circles centered at the depth z = -V0/a where V(z) = 0.
In this case, the wavefronts are also circles. They are the circles orthogonal to the family of ray circles, all centered on the Oz axis (for a source placed at the origin), at depths increasing with time.
In the limit of small incidence angles, T(X) can be approximated with an hyperbolic expression analogous to that in a medium of constant velocity. The velocity of the equivalent medium is VRMS. This approximation is commonly used in the processing of seismic reflection data.

Snell's law : p = sinθ/V = (1/Vax) = cte for a ray ray parameter horizontal distance X(p) between two points of a same ray of parameter p traveltime T(p) between two points of a same ray of parameter p
vertical traveltime τ(p) at vertical apparent velocity
stratified medium with plane horizontal interfaces (layers with thicknesses di and constant velocities Vi)
VRMS - VRMS
hodostratif.m - hodostrat.m
p = sinθi/Vi X(p) = ∑ditanθi = p∑diVi/(1-p2Vi2)½ T(p) = ∑di/cosθiVi = ∑di/(1-p2Vi2)½Vi

τ(p) = T(p)-pX(p) = ∑dicosθi/Vi = ∑di(1-p2Vi2)½/Vi

velocity gradient V(z)
for a positive gradient, the ray reaches a maximum depth Zmax(p)
p = sinθ(z)/V(z) = 1/V(Zmax) X(p) = p∫dzV(z)/(1-p2V(z)2)½ T(p) = ∫dz/(1-p2V(z)2)½V(z)

τ(p) = ∫dz(1-p2V(z)2)½/V(z)

case V(z) = V0+az
the rays are circles of radius R(p)=1/(ap) centered at z = -V0/a where V(z) = 0
sinθ(z) = (V0/a+z)/R = pV(z) X(p) = R[cosθ] = R[(1-p2V(z)2)½] T(p) = ∫Rdθ/V(z(θ)) = (1/a)∫dθ/sinθ = (1/a)[Log(tan(θ/2))] = (1/a)[Log(pV(z)/(1+(1-p2V(z)2)½))]
case V(z) = V0+az
the wavefronts at times T = -(1/a)[Log(tan(θ0/2))] are the circles orthogonal to the rays
the equation of the wavefronts is x2+(z-Zmax(T))2 = X(T)2
gradient vitesse
hodovz.m
tan(θ0/2) = e-aT X(T) = V0/atanθ0 = (V0/2a)(eaT-e-aT)

X(T) = (V0/a)sinh(aT)

Zmax(T) = (V0/a)(1/sinθ0-1) = (V0/2a)(eaT+e-aT-2)

Zmax(T) = (V0/a)(cosh(aT)-1)

VRMS approximation for small incidence angles
VRMS
vrms.m
θ ≈ 0
p ≈ θi/Vi
X(p) ≈ p∑diVi T(p) ≈ ∑di(1+p2Vi2/2)/Vi = ∑di/Vi+(p2/2)∑diVi = T(X=0)+X2/2∑diVi
T(X)2 ≈ T(0)2+X2/VRMS2
VRMS2 = (∑diVi)/(∑di/Vi) = (∫V(z)dz)/(∫dz/V(z))
VRMS(V0+az) = (a(V0z+az2/2)/Log(1+az/V0))½

V(z) generally increases with depth. The rays originating from a point source are curved toward the surface and reach it at increasing horizontal distances for incidence angles θ0 decreasing from 90° (ray departing horizontally from the source) to 0° (ray departing vertically from the source). The wavefront reaches the surface with an increasing apparent horizontal velocity.
If the velocity gradient has a large increase in a depth interval, the traveltime curve shows a triplication.
If the velocity gradient has a sign change in a depth interval, there is a shadow zone where no geometrical ray penetrates. In the corresponding X interval, no ray reaches the surface.
If the source is situated in a low velocity zone, the rays that bottom and top in the zone never leave it. The low velocity zone acts as a waveguide.
A plane wavefront incident on a depth interval where V(z) increases with depth is totally reflected if the bottom point of the rays is in the interval.

triplication - zone d'ombre - guide d'onde
hodovzt.m - hodovzo.m

Lutter W.J., R. D. Catchings and C. M. Jarchow, 1994, An image of the Columbia Plateau from inversion of high-resolution seismic data show the effect of a stratification basalt (5 km/s) - sediment (4 km/s) - basement (5.5 km/s) on first arrivals.
Hornby B., 1993, Tomographic reconstruction of near-borehole slowness using refracted borehole sonic arrivals is an example of the use of head and refracted waves in seismic logging.
Russel D., Refraction of sound in the atmosphere
Garcés, M.A., Hansen, R. A. & Lindquist, K.G., 1998, Traveltimes for infrasonic waves propagating in a stratified atmosphere

Rays, wavefronts, amplitudes for V(x,y,z)

For a stratified medium with interfaces dipping in different azimuths, there is no common normal to the interfaces. Snell's law is written for each interface as a function of the direction of the incident ray e and the normal to the interface n. The reflected and transmitted rays are within the plane (e , n). Let m be the unit vector normal to n in the plane (e , n), θ1 the angle of incidence relative to n, er and et the directions of the reflected and transmitted rays, θ2 the angle (et , n). The following relations allow tracing the rays in 3D :

e = -cosθ1n+sinθ1m er = cosθ1n+sinθ1m er-e = 2cosθ1n = -2(e.n)n er = e-2(e.n)n
e/V1 = -cosθ1/V1n+sinθ1/V1m et/V2 = -cosθ2/V2n+sinθ2/V2m et/V2-e/V1 = (cosθ1/V1-cosθ2/V2)n et = V2/V1(e-(e.n+((V1/V2)2-(1-e.n2))½)n)

Here is an example for a medium including two dipping interfaces. The rays displayed are PP and PS reflections on the deepest interface. One can verify that the reflection points correspond to an extremum of the traveltimes.

reflection 3D - reflection 3D -
refl3d.m

In the case of continuous variations of the propagation velocity with depth and lateral position, both the horizontal and vertical apparent velocities vary along a given ray. The variation along a ray of the inverse of the apparent velocity in a given direction is equal to the component of the gradient of 1/V (called slowness) in this direction. This relationship allows tracing rays by numerical integration with respect to the arclength along the ray and computing at each integration step the new propagation direction e.
In the case where V(x,z) varies linearly with x and z, the seismic rays are circles centered on the straigth line of equation V(x,z) = 0.

position x(s) along the ray as a function of arclength s
e = dx/ds
differential equation of the rays
e.e = 1 , e.e/∂x = 0 , gradT.e/∂x = 0
∂(dT/ds)/∂x = ∂(e.gradT)/∂x = e.grad∂T/∂x = d(∂T/∂x)/ds
curvature of rays
de/ds = eN/R
torsion of rays
b = e∧eN
deN/ds = -e/R-b
gradT = e/V
T = ∫ds/V(x(s))
d(e/V)/ds = d(gradT)/ds = grad(dT/ds) = grad(1/V) 1/R = VeN.grad(1/V) 1/τ = -Rb.d(Vgrad(1/V))/ds
case V(x,z) = V0+axx+azz = V0+a(xsinα+zcosα)
by a rotation with angle α, one gets back to the case V(Z) = V0+aZ
seismic rays are circles centered on the straigth line of equation V(x,z) = 0
d(sinθ/V)/ds = -ax/V2 = -asinα/V2
d(cosθ/V)/ds = -az/V2 = -acosα/V2
1/R = dθ/ds = -axcosθ/V+azsinθ/V = asin(θ-α)/V

One can derive ray equations directly from the wave equation for a V(x) medium by looking for solutions expressed as quasi-plane harmonic waves with wavefront T(x) and amplitude A(x). One gets terms depending on successive powers of the angular frequency ω. The term in ω2, dominant at high frequency, gives the eikonal equation of traveltimes. It can be solved numerically in heterogeneous media by a finite difference method. The term in ω gives the transport equation that determines the variation of the amplitude A(x).

wave equation quasi-plane wave term in ω2 → eikonal equation term in ω → transport equation ray tube with section dS(s)
Δφ+(ω/V(x))2φ = 0 φ = A(x)eiω(T(x)-t) gradT.gradT=1/V2 2gradA.gradT+AΔT = div(A2gradT) = 0 ∫∫∫div(A2gradT)dυ = ∫∫(A2/V)e.dσ = 0
A2dS/V = cte


Langan, R.T., I. Lerche, and R. T. Cutler , 1985, Tracing of rays through heterogeneous media: An accurate and efficient procedure
Bernasconi G. and G. Drufuca, 2001, 3-D traveltimes and amplitudes by gridded rays give a simple method of 3D ray-tracing by a finite-difference method.
Sava P. and S. Fomel, M. 2001, 3-D traveltime computation using Huygens wavefront tracing

Continuity of displacement and stresses across a plane interface

The reflection-transmission coefficients for a plane interface between two elastic media are obtained by writing the continuity of the components of particle motion and stresses that apply on both sides of the interface. Stresses that do not apply on the interface do not have to be taken into account, even at the depth of the interface. For a free surface, the stresses are zero outside of the elastic medium : they are also zero on the surface. In contrast, there is no condition on the free surface displacement, as proved by the surface damages due to earthquakes.
The coefficients are computed for plane harmonic waves for which the frequency and the apparent horizontal wavelength are the same for the incident, reflected and transmitted waves (Snell's law). kz depends for each wave on its kind (P or S) and its incidence angle (angles are linked by Snell's law). The sign of kz is determined by the vertical propagation direction (upgoing or downgoing) of the wave.
Here are the boundary conditions for different types of interfaces and waves, in the case of waves propagating in the vertical plane (x,z) and incident on a plane horizontal interface :

ω and kx = ωp = ωsin(θ)/VP = ωsin(η)/VS of the incident wave are the same for all reflected and transmitted waves on a plane horizontal interface
downgoing waves : kzP = +ωcos(θ)/VP , kzS = +ωcos(η)/VS
upgoing waves :      kzP = -ωcos(θ)/VP , kzS = -ωcos(η)/VS
SH waves P-SV waves
free surface σzyIncident SHzyReflected SH = 0 σzzIncident P or SVzzReflected PzzReflected SV = 0
σzxIncident P or SVzxReflected PzxReflected SV = 0
solid - solid interface uIncident SH+uReflected SH = uTransmitted SH
σzyIncident SHzyReflected SH = σzyTransmitted SH
uxIncident P or SV+uxReflected P+uxReflected SV = uxTransmitted P+uxTransmitted SV
uzIncident P or SV+uzReflected P+uzReflected SV = uzTransmitted P+uzTransmitted SV
σzzIncident P or SVzzReflected PzzReflected SV = σzzTransmitted PzzTransmitted SV
σzxIncident P or SVzxReflected PzxReflected SV = σzxTransmitted PzxTransmitted SV
liquid - solid interface . uzIncident P+uzReflected P = uzTransmitted P+uzTransmitted SV
σzzIncident PzzReflected P = σzzTransmitted PzzTransmitted SV
σzxTransmitted PzxTransmitted SV = 0

Reflection of a plane harmonic SH wave on a plane interface

A plane harmonic SH wave propagating in the vertical plane (x,z) and incident on a plane horizontal inteface between two elastic media produces on this interface a perturbation of displacement uy and shear stress σzy. This perturbation sweeps along the interface at the apparent velocity of the incident wave VS1/sinη1, where η1 is the angle of the incident ray with respect to the vertical. It is balanced by the perturbations due to the reflected and transmitted SH waves that sweep along the interface at the same apparent velocity (Snell's law). The displacement uy and shear stress σzy resulting from the incident and reflected waves on one side of the interface are equal to uy and σzy due to the transmitted SH wave on the other side of the interface. This is how one gets the reflection and transmission coefficients, expressed here for the particle motion uy.
In the case VS1>VS2 and η1c, the transmitted wave becomes evanescent : its amplitude decreases in an exponential way with the distance to the interface. There is a phase shift χ for the totally reflected wave given by the argument of the complex reflection coefficient. The interference between the incident and totally reflected wave produces a wave that is standing vertically and propagating horizontally.

Snell's law :
kx = ωp = ωsinη1/VS1 = ωsinη2/VS2
incident downgoing SH wave reflected upgoing SH wave transmitted downgoing SH wave
particle motion SH wave
uy(x,z,t) = Uyeikzzei(kxx-ωt)
UyI = 1
kzI = ωcosη1/VS1
UyR = R
kzR = -ωcosη1/VS1
UyT = T
kzT = ωcosη2/VS2
stress on horizontal surface
σzy(x,z,t) = μ∂uy/∂z = ρVS2ikzuy = iωSzyeikzzei(kxx-ωt)
SzyI = ρ1VS1cosη1 SzyR = -ρ1VS1cosη1R SzyT = ρ2VS2cosη2T
continuity on interface z =0
(uyI+uyR)(z=0) = uyT(z=0)
zyIzyR)(z=0) = σzyT(z=0)
1+R=T
(1-R)ρ1VS1cosη1 = Tρ2VS2cosη2
R = (ρ1VS1cosη12VS2cosη2)/(ρ1VS1cosη12VS2cosη2)
T = 2ρ1VS1cosη1/(ρ1VS1cosη12VS2cosη2)
weak contrast
ρ+δρ , V+δV
δη = tanηδV/V (δp=0)
R ≈ -δ(ρVcosη)/2ρVcosη = -(1/2)(δρ/ρ+(1-tg2η)δV/V) T ≈ 1
total reflection
sinηc=VS1/VS2
η1c , pVS2>1
kzR = -kzI = -ω(1-p2VS12)½/VS1
R = (ρ1VS1(1-p2VS12)½-iρ2VS2(p2VS22-1)½)/(ρ1VS1(1-p2VS12)½+iρ2VS2(p2VS22-1)½)
R = eiχ(p) , χ(p) = -2Arctan(ρ2VS2(p2VS22-1)½1VS1(1-p2VS12)½)
(uyI+uyR)(x,z,t) = (eikzIz+ei(kzRz+χ(p)))ei(kxx-ωt) = 2cos(kzIz-χ(p)/2)ei(kxx-ωt+χ(p)/2)
transmitted evanescent wave : kzT = iω(p2VS22-1)½/VS2
T = 2ρ1VS1(1-p2VS12)½/(ρ1VS1(1-p2VS12)½+iρ2VS2(p2VS22-1)½)
T = ||T||eiχ(p)/2
uyT(x,z,t) = ||T||e-ωz(p2VS22-1)½/VS2ei(kxx-ωt+χ(p)/2)

Here are the reflection and transmission coefficients and the particle motion computed as a function of incidence angle in the case of partial and total reflection :
coefficients reflection-transmission SH - reflection totale SH
reflsh.m

Here is an animation in the case of a reflection on a free surface (R=1) that produces standing waves along depth with nodes (zero) of stress for z = nπ/kz and antinodes (maxima) at z = (n+1/2)π/kz.

Ocean Acoustics Library : total reflection of a plane wave on a plane interface

Reflection of a plane harmonic P or SV wave on a plane free surface

P and SV waves propagating in the vertical plane (x,z) produce a compression σzz and a shear stress σzx on the free forizontal surface of a half-space. There is therefore a coupling between the two kinds of waves at reflection : an incident P or SV wave is reflected as a P and a SV wave. The stresses σzz and σzx resulting from the incident wave must go to zero at the free surface. The two resulting equations determine the reflection coefficients, expressed here for the potential of the particle motion.
In the case where a SV wave is incident with an angle η larger than the critical incidence corresponding to the ration VS/VP, the reflected P wave becomes evanescent. The SV wave is totally reflected with a phase shift χ' given by the argument of the complex reflection coefficient.

Snell's law :
kx = ωp = ωsinθ/VP = ωsinη/VS
incident upgoing P wave reflected downgoing P wavereflected downgoing SV wave
displacement potentials P and SV
φ(x,z,t) = Φ eikzPzei(kxx-ωt)
ψy(x,z,t) = Ψ eikzSzei(kxx-ωt)
ΦI = 1
kzP = -ωcosθ/VP
ΦR = Rφ
kzP = ωcosθ/VP
ΨR = Rψ
kzS = ωcosη/VS
stresses due to P wave on a horizontal surface
σzzP = λΔφ+2μ∂2φ/∂z2 = -ρω2(1-2p2VS2)φ = ρω2SzzeikzPzei(kxx-ωt)
σzxP = 2μ∂2φ/∂z∂x = -2ρVS2ωpkzφ = ρω2SzxeikzPzei(kxx-ωt)
Szz = -(1-2p2VS2)
Szx = 2VS2pcosθ/VP
Szz = -(1-2p2VS2)Rφ
Szx = -(2VS2pcosθ/VP)Rφ
.
stresses due to SV wave on a horizontal surface
σzzS = 2μ∂2ψy/∂z∂x = -2ρVS2ωpkzψ = ρω2SzzeikzSzei(kxx-ωt)
σzxS = μ(-∂2ψy/∂z2+∂2ψy/∂x2) = ρω2(1-2p2VS2)ψ = ρω2SzxeikzSzei(kxx-ωt)
. . Szz = -(2VS2pcosη/VS)Rψ
Szx = (1-2p2VS2)Rψ
incident P wave, stresses = 0 on free surface z = 0
zzPI + σzzPR + σzzSR)(z=0) = 0
zxPI + σzxPR + σzxSR)(z=0) = 0
(1-2p2VS2)(1+Rφ)+(2VS2pcosη/VS)Rψ = 0
(2VS2pcosθ/VP)(1-Rφ)+(1-2p2VS2)Rψ = 0
reflection P-SV surface libre D = (1-2p2VS2)2+4VS4p2cosθ/VPcosη/VS
Rφ = (-(1-2p2VS2)2+4VS4p2cosθ/VPcosη/VS)/D
Rψ = (-4(1-2p2VS2)VS2pcosθ/VP)/D
incident SV wave, stresses = 0 on free surface z = 0
zzSI + σzzPR + σzzSR)(z=0) = 0
zxSI + σzxPR + σzxSR)(z=0) = 0
(1-2p2VS2)R'φ+(2VS2pcosη/VS)(-1+R'ψ) = 0
-(2VS2pcosθ/VP)R'φ+(1-2p2VS2)(1+R'ψ) = 0
reflection P-SV surface libre R'φ = (4(1-2p2VS2)VS2pcosη/VS)/D
R'ψ = (-(1-2p2VS2)2+4VS4p2cosθ/VPcosη/VS))/D
total reflection of SV wave, sinη > VS/VP (η > 36°)
reflected evanescent P wave : kzP = iω(p2VP2-1)½/VP
R'ψ = eiχ'(p)
χ'(p) = -2Arctan((4VS4p2(p2VP2-1)½/VPcosη/VS)/(1-2p2VS2)2)

Reflection of a plane harmonic P or SV wave on a plane interface

On a plane horizontal interface between two elastic half-spaces, the P and SV waves propagating in the vertical plane (x,z) are linked by Snell's law and by the continuity of the components of particle motion ux and uz and stresses σzz and σzx across the interface. An incident P or SV wave produces two P and SV reflected waves and two P and SV transmitted waves. The four continuity equations can be written as the product of a matrix by the vector of reflection-transmission coefficients, expressed here for the potentials of particle motion.
For a liquid-solid interface , there is continuity for uz and σzz across the interface. The shear stress σzx in the elastic medium must go to zero at the interface, since there is no shear stress in the liquid.
As soon as a value of critical incidence is reached, the reflection-transmission coefficients become complex quantities. The phase-shift χ' at the total reflection of the SV wave is equal to the argument of the reflection coefficient.

Snell's law : kx = ωp = ωsinθ1/VP1 = ωsinη1/VS1 = ωsinθ2/VP2 = ωsinη2/VS2
P incident downgoing
ΦI = 1
kzI = ωcosθ1/VP1
P reflected upgoing
ΦR = Rφ
kzP = -ωcosθ1/VP1
SV reflected upgoing
ΨR = Rψ
kzS = -ωcosη1/VS1
P transmitted downgoing
ΦT = Tφ
kzP = ωcosθ2/VP2
SV transmitted downgoing
ΨT = Tψ
kzS = ωcosη2/VS2
Ux = p + pRφ + (cosη1/VS1)Rψ = pTφ -(cosη2/VS2)Tψ
Uz = cosθ1/VP1 -(cosθ1/VP1)Rφ + pRψ = (cosθ2/VP2)Tφ + pTψ
Szz = ρ1(1-2p2VS12) + ρ1(1-2p2VS12)Rφ - (2ρ1VS12pcosη1/VS1)Rψ = ρ2(1-2p2VS22)Tφ + (2ρ2VS22pcosη2/VS2)Tψ
Szx = -2ρ1VS12pcosθ1/VP1 + (2ρ1VS12pcosθ1/VP1)Rφ + ρ1(1-2p2VS12)Rψ = -(2ρ2VS22pcosθ2/VP2)Tφ + ρ2(1-2p2VS22)Tψ
matrix notation
case liquid-solid
AR = B ; R = [Rφ , Rψ , Tφ , Tψ]t ; B = [-p , -cosθ1/VP1 , -ρ1(1-2p2VS12) , 2ρ1VS12pcosθ1/VP1]t
ALRL = BL ; RL = [Rφ , Tφ , Tψ]t ; BL = [-cosθ1/VP1 , -ρ1 , 0]t
A[4,4]
AL[3,3]
p cosη1/VS1 -p cosη2/VS2
-cosθ1/VP1 p -cosθ2/VP2 -p
ρ1(1-2p2VS12) 1) -2ρ1VS12pcosη1/VS1 2(1-2p2VS22) -2ρ2VS22pcosη2/VS2
1VS12pcosθ1/VP1 (0) ρ1(1-2p2VS12) 2VS22pcosθ2/VP2 2(1-2p2VS22)
P incident downgoing or upgoing
coefficients reflection-transmission P-SV
reflpsv.m
Rφ = det([B,A[:,2:4]])/det(A)

tφ = det([b,A[:,2:4]])/det(A)

Rψ = det([A[:,1],B,A[:,3:4]])/det(A)

tψ = det([A[:,1],b,A[:,3:4]])/det(A)

Tφ = det([A[:,1:2],B,A[:,4]])/det(A)

rφ = det([A[:,1:2],b,A[:,4]])/det(A)

Tψ = det([A[:,1:3],B])/det(A)

rψ = det([A[:,1:3],b])/det(A)

P incident downgoing
D = det(A) = P-Q
Rφ = (-P-Q)/D
Rψ =2S/D
AR = B ; R = [Rφ , Rψ , Tφ , Tψ]t ;
B = [-p , -cosθ1/VP1 , -ρ1(1-2p2VS12) , 2ρ1VS12pcosθ1/VP1]t = [-a11 , a21 , -a31 , a41]t ;
D = (a11A11+a31A31)-(a21A21+a41A41) ;
DRφ = -(a11A11+a31A31)-(a21A21+a41A41)
DRψ/2 = a11a21(a33a44-a43a34) +a11a41(a23a34-a33a24) +a31a41(a13a24-a23a14)
DTφ/2 = -(a11a21(a32a44-a42a34) +a11a41(a22a34-a32a24) +a31a41(a12a24-a22a14))
DTψ/2 = (a11a21(a32a43-a42a33) +a11a41(a22a33-a32a23) +a31a41(a12a23-a22a13)
P incident upgoing
kzI = -ωcosθ2/VP2
Ar = b ; r = [tφ,tψ,rφ,rψ]t
b = [p , -cosθ2/VP2 , ρ2(1-2p2VS22) , 2ρ2VS22pcosθ2/VP2]t = [-a13 , a23 , -a33 , a43]t
D = (a13A13+a33A33)-(a23A23+a43A43) ;
Drφ = -(a13A13+a33A33)-(a23A23+a43A43)
Drψ/2 = a13a23(a31a42-a41a32) +a13a43(a21a32-a31a22) +a33a43(a11a22-a21a12)
Dtφ/2 = -(a13a23(a34a42-a44a32) +a13a43(a24a32-a34a22) +a33a43(a14a22-a24a12))
Dtψ/2 = a13a23(a34a41-a44a31) +a13a43(a24a31-a34a21) +a33a43(a14a21-a24a11)
case liquid-solid
coefficients reflection-transmission liquide-solide
reflpsl.m
ALRL = BL ; RL = [RφL , TφL , TψL]t ; BL = [-cosθ1/VP1 , -ρ1 , 0]t
ALrL = bL ; rL = [tφL , rφL , rψL]t ; bL = [-cosθ2/VP2 , ρ2(1-2p2VS22) , 2ρ2VS22pcosθ2/VP2]t
DL = -ρ22cosθ1/VP1((1-2p2VS22)2+4VS24p2cosθ2/VP2cosη2/VS2) -ρ1ρ2cosθ2/VP2
DLRφL = -ρ22cosθ1/VP1((1-2p2VS22)2+4VS24p2cosθ2/VP2cosη2/VS2) 1ρ2cosθ2/VP2
DLTφL = -2ρ1ρ2cosθ1/VP1(1-2p2VS22) ; DLtφL = -2ρ22cosθ2/VP2(1-2p2VS22)
DLTψL = -4ρ1ρ2cosθ1/VP1VS22pcosθ2/VP2
SV incident downgoing or upgoing
coefficients reflection-transmission SV-P
reflpsv.m
R'φ = det([B',A[:,2:4]])/D

t'φ = det([b',A[:,2:4]])/D

R'ψ = det([A[:,1],B',A[:,3:4]])/D

t'ψ = det([A[:,1],b',A[:,3:4]])/D

T'φ = det([A[:,1:2],B',A[:,4]])/D

r'φ = det([A[:,1:2],b',A[:,4]])/D

T'ψ = det([A[:,1:3],B'])/D

r'ψ = det([A[:,1:3],b'])/D

SV incident downgoing
ΨI = 1 ; kzI = ωcosη1/VS1
D = det(A) = -P'+Q'
R'ψ = (-P'-Q')/D
AR'=B' ; R' = [R'φ , R'ψ , T'φ , T'ψ]t ;
B' = [cosη1/VS1 , -p , -2ρ1VS12pcosη1/VS1 , -ρ1(1-2p2VS12)]t = [a12 , -a22 , a32 , -a42]t ;
D = -(a12A12+a32A32)+(a22A22+a42A42) ;
DR'ψ = -(a12A12+a32A32)-(a22A22+a42A42)
SV incident upgoing
kzI = -ωcosη2/VS2
Ar'=b' ; r' = [t'φ , t'ψ , r'φ , r'ψ]t
b' = [cosη2/VS2 , p , -2ρ2VS22pcosη2/VS2 , ρ2(1-2p2VS22)]t = [a14 , -a24 , a34 , -a44]t ;
D = -(a14A14+a34A34)+(a24A24+a44A44)
Dr'ψ = -(a14A14+a34A34)-(a24A24+a44A44)
total reflection of downgoing SV wave
p = sinη1/VS1
1/VS1 > p > 1/VP1
p > 1/VS2 > 1/VP2
R'ψ = eiχ'(p)
imaginary terms of A : a14 = i(p2VS22-1)½/VS2 ; a21 = -i(p2VP12-1)½/VP1 ; a23 = -i(p2VP22-1)½/VP2 ;
a34 = -2iρ2VS22p(p2VS22-1)½/VS2 ; a41 = 2iρ1VS12p(p2VP12-1)½/VP1 ; a43 = 2iρ2VS22p(p2VP22-1)½/VP2 ;
⇒ A12, A32 and P' are imaginary, A12, A32 and Q' are real
R'ψ = (-P'-Q')/(-P'+Q') = eiχ'(p)
χ'(p) = 2Arctan(P'/iQ') = 2Arctan((1/i)(a12A12+a32A32)/(a22A22+a42A42))

Here are the moduli of the reflection-transmission coefficients P-SV and SV-P computed for incidence angles of 0°, 15° and 30° in water for a sedimentary stratified medium :
Modèle vitesses-densité Mer du Nord - Reflection-transmission Mer du Nord

Approximations of P-P and P-SV reflection coefficients for weak contrasts

When the contrast in elastic parameters and density across the interface is weak, the reflection coefficients can be approximated with linear relations in terms of these contrasts. These approximations are used in the analysis of reflected amplitudes in reflection seismic prospecting.

weak contrasts ρ2 = ρ+δρ ; VP2 = VP+δVP ; θ2 = θ+δθ ; δθ = tanθδVP/VP ; VS2 = VS+δVS ; η2 = η + δη ; δη = tanηδVS/VS
a11 = -a13 = a22 = -a24 = p ; a12 = cosη/VS ; a21 = -cosθ/VP ; a31 = a42 = ρ(1-2p2VS2) ; a32 = -2ρVS2pcosη/VS ; a41 = 2ρVS2pcosθ/VP
a14 = (a12+δa12) ; a23 = (a21+δa21) ; a33 = a44 = -(a31+δa31) ; a34 = (a32+δa32) ; a43 = (a41+δa41)
D = det(A) D = (p2-a21a12)(a312-a41a32) - (2pa21)(-2a31a32) + (-p2-a21a12)(a32a41+a312) + (a12a21+p2)(-a312-a41a32) - (-2pa12)(2a31a41) + (p2-a21a12)(a312-a41a32)
D = 2(p2-a21a12)(a312-a41a32) -2(p2+a21a12)(a32a41+a312) +4pa31(a21a32+a12a41) = -4p2a41a32 -4a21a12a312 +4pa31(a21a32+a12a41)

D = 4cosθ/VPcosη/VS [p2(2ρVS2p)2 +(ρ(1-2p2VS2))2 +4ρ2p2VS2(1-2p2VS2)] = 4ρ2cosθ/VPcosη/VS

Rφ DRφ = (-p2-a21a12)((a31+δa31)2-(a41+δa41)(a32+δa32)) - (-p(a21+δa21)+pa21)(-a32(a31+δa31)-a31(a32+δa32)) + (p2-a21(a12+δa12))(a32(a41+δa41)+a31(a31+δa31)) + (a12(a21+δa21)+p2)(a31(a31+δa31)-a41(a32+δa32)) - (-pa12-p(a12+δa12))(-a31(a41+δa41)+a41(a31+δa31)) + (p2-(a21+δa21)(a12+δa12))(-a312-a41a32))
DRφ = (-p2-a21a12)(2a31δa31-a41δa32-a32δa41) - 2pa32a31δa21 + (p2-a21a12)(a32δa41+a31δa31)-a21δa12(a32a41+a312) + (p2+a12a21)(a31δa31-a41δa32)+a12δa21(a312-a41a32) + 2pa12(-a31δa41+a41δa31) + (a21δa12+a12δa21)(a312+a41a32)
DRφ = 2(p(pa32-a12a31)δa41 + a12(pa41-a21a31)δa31 + a31(a31a12-pa32)δa21)

DRφ = 2ρ(-2p2cosη/VSδ(ρVS2cosθ/VP) +cosη/VScosθ/VPδ(ρ(1-2p2VS2) + ρ(1-2p2VS2)cosη/VSδ(-cosθ/VP))
DRφ = 2ρcosη/VS(cosθ/VP((1-4p2VS2)δρ - 4ρp2δ(VS2)) - ρδ(cosθ/VP))

Rφ = (1/2)((1-4p2VS2)δρ/ρ - 8p2VS2δVS/VS - δ(cosθ/VP)/(cosθ/VP))
Rφ = (1/2)((1-4p2VS2)δρ/ρ - 8p2VS2δVS/VS + (1/cosθ)2δVP/VP)
Rφ = (1/2)((δρ/ρ+δVP/VP) + (δVP/VP -4VS2/VP2(δρ/ρ+2δVS/VS)sin2θ + (tg2θ-sin2θ)δVP/VP) ≈ R0+Gsin2θ

Rψ DRψ = (2pa21)((a31+δa31)2-(a41+δa41)(a32+δa32)) - p((a21+δa21)+a21)(a31(a31+δa31)-a41(a32+δa32)) + (-p2-a21(a12+δa12))(-a31(a41+δa41)+a41(a31+δa31)) + p(-(a21+δa21)+a21)(-a31(a31+δa31)-a41(a32+δa32)) - (p2-a21(a12+δa12))(a31(a41+δa41)+a41(a31+δa31)) + (p2-(a21+δa21)(a12+δa12))(2a31a41)
DRψ = 2pa21(2a31δa31-a41δa32-a32δa41) - 2pa21(a31δa31-a41δa32)-pδa21(a312-a41a32) + (-p2-a21a12)(-a31δa41)+a41δa31)) + (-pδa21)(-a312-a41a32) - (p2-a21a12)(a31δa41+a41δa31) +a21δa122a31a41 + (-2a31a41(a21δa12+a12δa21))
DRψ = 2(p(a21a31-pa41)δa31 + a21(-pa32+a12a31)δa41 + a41(pa32-a31a12)δa21)

DRψ = -2ρpcosθ/VP(δ(ρ(1-2p2VS2)) + cosη/VSδ(2ρVS2cosθ/VP) + 2ρVS2cosη/VSδ(-cosθ/VP))
DRψ = -2ρpcosθ/VP ((1-2p2VS2+2VS2cosθ/VPcosη/VS)δρ + 2ρ(-p2+cosη/VScosθ/VP)δ(VS2)

Rψ = -(1/2)pVS/cosη ((1-2p2VS2+2VS2cosθ/VPcosη/VS)δρ/ρ + 4VS2(-p2+cosη/VScosθ/VP)δVS/VS)
Rψ ≈ -(1/2)sinη ((1+2VS/VP)δρ/ρ + 4VS/VPδVS/VS) pour incidence faible

Rayleigh wave guided by the free surface of a half-space and Stoneley wave guided by an interface

The Rayleigh wave corresponds to the propagation along the free surface of a half-space (z ≥ 0 ) of two evanescent P and SV waves having the same horizontal propagation velocity VR < VS. By writing that stresses are zero on the free surface, one gets the equation giving the value of VR, as a function of the VP/VS ratio. VR ≈ 0.9VS does not depend on frequency. The particle motion at the surface is elliptical because there is a phase shift π/2 between ux and uz.

1/VR = p = kx/ω > 1/VS > 1/VP evanescent P wave
kzP = iω(p2VP2-1)½/VP
evanescent S wave
kzS = iω(p2VS2-1)½/VS
σzz = σzx = 0 on free surface z = 0 (1-2p2VS2)Φ+i2pVS(p2VS2-1)½Ψ = 0
-i2VS2p(p2VP2-1)½/VPΦ+(1-2p2VS2)Ψ = 0
équation de Rayleigh déterminant = 0
(1-2p2VS2)2-4p2VS4(p2VS2-1)½/VS(p2VP2-1)½/VP = 0
(2-VR2/VS2)2-4(1-VR2/VP2)½(1-VR2/VS2)½ = 0

(ux , uz) = (Ux(z) , Uz(z))eiω(x/VR-t)
Ux = iωpΦe-ωz(p2VP2-1)½/VP+ω(p2VS2-1)½/VSΨe-ωz(p2VS2-1)½/VS
Uz = -ω(p2VP2-1)½/VPΦe-ωz(p2VP2-1)½/VP+iωpΨe-ωz(p2VS2-1)½/VS

Ux = eiπ/2ωpΦ(e-ωz(p2VP2-1)½/VP+(1/(2p2VS2)-1)e-ωz(p2VS2-1)½/VS)
Uz = eω(p2VP2-1)½/VPΦ(e-ωz(p2VP2-1)½/VP+(1/(2p2VS2)-1)-1e-ωz(p2VS2-1)½/VS)

In a similar way, an interface (z = 0) between two elastic half-spaces can guide a Stoneley wave (only for some values of velocities and densities). It is made of two coupled Rayleigh waves (two P1, SV1 evanescent waves for z ≤ 0 coupled to two P2 , SV2 evanescent waves for z ≥ 0) propagating at the same horizontal velocity. VST is determined by looking for roots of the determinant of the matrix A obtained in the computation of the reflection-transmission coefficients for P-SV waves. There is not always a solution , except in the liquid-solid case.

Stoneley equation
liquid-solid interf.
DL = -ρ22cosθ1/VP1((1-2p2VS22)2+4VS24p2cosθ2/VP2cosη2/VS2) -ρ1ρ2cosθ2/VP2 = 0
(1-2p2VS22)2-4VS24p2(p2VP22-1)½/VP2(p2VS22-1)½/VS2 + (ρ12)((p2VP22-1)½/VP2)/((p2VP12-1)½/VP1) = 0

Stephen, R.A., F. Cardo-Casas, and C. H. Cheng , 1985, Finite-difference synthetic acoustic logs show the propagation of a Stoneley wave in a well for sonic logging.

Love and Rayleigh waves guided in a layer with thickness H

The Love wave is a guided wave resulting from constructive interferences of SH waves totally reflected in a layer having a propagation velocity VS1 less than the propagation velocity VS2 of the half-space beneath the layer. The total reflection on the free surface is without phase-shift. On the interface with the half-space, there is a phase-shift χ , computed for the reflection coefficient of a SH wave for an incidence angle in the slow medium larger than ηc. The propagation velocity VL of the Love wave is the apparent horizontal velocity of the SH wave in the layer, such that VS1≤VL≤VS2. It depends on frequency (dispersion). The different normal modes (fundamental and harmonics) in the layer correspond to a node of stress at the free surface for the stationary wave imposed by the total reflection at the interface.

reflection totale SH standing wave in z
kz for normal modes
travelling wave in x , kx = (ω2/VS2-kz2)½
phase velocity V(ω) = Vax = ω/kx
ω ≥ high-frequency cut-off ωc
kx real for travelling wave in x
normal modes 1D
C, C, G, C, E, G...
eikz+e-ikz = 2cos(kz)
Hkn = nπ , nλn/2 = H , n = 1,2,3...
slab with free surfaces
Rsup = Rinf = 1
eikzz+e-ikzz = 2cos(kzz)
Hkz n = nπ , nλz n/2 = H , n = 1,2,3...
kx n = (ω2/VS2-(nπ/H)2)½
Vn(ω) = ω/kx n
ωc n = nπVS/H
layer (-H ≤ z ≤ 0)
over half-space (z≥ 0)
Rsurf = 1 ; Rinterf = eiχ(p)
eik1zz+eiχ(p)e-ik1zz = 2eiχ(p)/2cos(k1zz-χ(p)/2)
Hk1z n+χ(p)/2 = nπ , n = 0,1,2,3...
kx n = (ω2/VS12-(nπ-χ(p)/2)2/H2)½
VL n(ω) = ω/kx n = 1/pn
kx nc = ωc n/VS2 ; χ(1/VS2) = 0
ωc n = nπ/(H(1/VS12-1/VS22)½)
relation de dispersion Love
displov.m
k1z = (ω/VS1)(1-p2VS12)½
χ(p) = -2Arctan(ρ2VS2(p2VS22-1)½1VS1(1-p2VS12)½) = -2Arctan(I2/I1)

dispersion relation of Love wave :
ω(pn) = (-χ(pn)/2+nπ)VS1/(H(1-pn2VS12)½) = (Arctan(I2/I1)+nπ)VS1/(H(1-pn2VS12)½)

An SV wave totally reflected in a layer such that VS1<VS2<VP1<VP2 produces a guided Rayleigh wave. It propagates at the velocity VR that is the apparent horizontal velocity of the SV waves in the layer, such that VS1≤VR≤VS2. The total reflection on the free surface produces a phase-shift χ'1(p) computed for P-SV reflection coefficients on a free surface. The total reflection on the interface with the Half-space produces a phase-shift χ'2(p) computed for P-SV reflection coefficients at the interface. The dispersion relation is written by taking into account the sum χ'12(p) of these two phase-shifts for the standing wave condition in the layer. One obtains in this way the dispersion relation for the harmonics (n≥1 , VS1≤VRn≤VS2, VRn=VS2 at the cut-off frequency fcn) of the Rayleigh wave guided in the layer.

boundary conditions normal modes in z travelling wave in x cut-off frequency
Rsurf = eiχ'1(p)
Rinterf = eiχ'2(p)
χ'12(p) = χ'1(p)+χ'2(p)
(n-χ'12(p)/2π)λ1z n/2 = H
Hk1z n+χ'12(p)/2 = nπ
kx n = (ω2/VS12-(nπ-χ'12(p)/2)2/H2)½
VR n(ω) = ω/kx n = 1/pn
ωc n = (nπ-χ'12(1/VS2))/2)/(H(1/VS12-1/VS22)½)
dispersion rel. of Rayleigh wave
overtones n≥1
VS1≤VR n≤VS2
χ'1(p) = -2Arctan((4VS14p2(p2VP12-1)½/VP1(1-p2VS12)½/VS1)/(1-2p2VS12)2) = -2Arctan(S)
χ'2(p) = -2Arctan(Im(D)/Re(D)) = -2Arctan(I)
tan(Hω(1-p2VS12)½/VS1) = -tan((χ'1(p)+χ'2(p))/2) = (I+S)/(1-IS)
ω(pn) = (-(χ'1(pn)+χ'2(pn))/2+nπ)VS1/(H(1-pn2VS12)½) = (Arctan((I+S)/(1-IS))+nπ)VS1/(H(1-pn2VS12)½)

The dispersion relation of the fundamental mode of the Rayleigh wave is obtained by considering four upgoings and downgoings P and SV waves in the layer and two evanescent P and SV waves in the half-space. The propagation velocity VR0 correspond to the root of the determinant of the matrix expressing the boundary conditions on the free surface in z = -H and on the interface on z = 0. It is such that VRS1≤VR0≤VRS2 where VRS1is the Rayleigh wave velocity guided at the free surface of a half-space of velocity VS1 and VRS2 that for a half-space of velocity VS2. At low frequency, VR0 = VRS2 (the wave with wavelength >> H does not see the layer).

boundary cond. downgoing P1 , kzP1 = ω(1-p2VP12)½/VP1
ZP1 = e-ikzP1H
downgoing S1 , kzS1 = ω(1-p2VS12)½/VS1
ZS1 = e-ikzS1H
upgoing P1 , -kzP1 upgoing S1 , -kzS1 evanescent P2 , kzP2 = iω(p2VP22-1)½/VP2 evanescent S2 , kzS2 = iω(p2VS22-1)½/VS2
z = -H σzz(kzP12)ZP1 -2μ1kxkzS1ZS1 σzz(kzP12)/ZP1 1kxkzS1/ZS1 0 0
-2μ1kxkzP1ZP1 σzx(kzS12)ZS1 1kxkzP1/ZP1 σzx(kzS12)/ZS1 0 0
z = 0 kx -kzS1 kx kzS1 -kx kzS2
kzP1 kx -kzP1 kx -kzP2 -kx
σzz(kzP12) -2μ1kxkzS1 σzz(kzP12) 1kxkzS1 zz(kzP22) 2kxkzS2
-2μ1kxkzP1 σzx(kzS12) 1kxkzP1 σzx(kzS12) 2kxkzP2 zx(kzS22)

The high-frequency part of the dispersion relation of the fundamental mode (VRS1≤VR0≤VS1) corresponds to the Rayleigh wave guided by the free surface of the layer coupled to a Stoneley wave guided by the interface (or two P and SV evanescent waves in the layer from the surface coupled to four evanescent waves from the interface). At high-frequency, VR0 = VRS1 (the wave with wavelength << H sees only the layer).

boundary cond. waves guided by free surface in z = -H and prolongated in z = 0 by
ZP1 = e-ω(p2VP12-1)½/VP1H (0) ; ZS1 = e-ω(p2VS12-1)½/VS1H (0)
waves guided by interf. in z = 0 and prolongated in z = -H by ZP1 , ZS1
z = -H Rayleigh free surf. (1-2p2VS12)ZP1 (0) -i2pVS1(p2VS12-1)½ZS1 (0) 0 0
+i2VS12p(p2VP12-1)½/VP1ZP1 (0) +(1-2p2VS12)ZS1 (0) 0 0
z = 0 pZP1 (0) -i(p2VS12-1)½/VS1ZS1 (0) Stoneley at interface
i(p2VP12-1)½/VP1ZP1 (0) pZS1 (0)
ρ1(1-2p2VS12)ZP1 (0) i2ρ1VS12p(p2VS12-1)½/VS1ZS1 (0)
-i2ρ1VS12p(p2VP12-1)½/VP1ZP1 (0) ρ1(1-2p2VS12)ZS1 (0)

Russel D., Waveguide

Group velocity

superposition of harmonic waves of phase velocities V(ω)=ω/k constructive interference in (x,t) ⇔ stationnary phase for harmonic waves (the U variation is negligible) ⇒ group velocity Vg
u(x,t) = ∫U(ω)eiω(x/V(ω)-t)dω = ∫U(ω)ei(k(ω)x-ωt)dω = ∫U(k)ei(kx-ω(k)t)dk d(k(ω)x-ωt)/dω = (dk/dω)x-t = 0 ⇒ Vg = dω/dk = V+kdV/dk = 1/(dk/dω) = 1/(p+ωdp/dω)
vitesse groupe onde de Love - groupe onde de Love
displov.m

dispersion relation of Love wave : tan(Hω(pn)(1-pn2VS12)½/VS1) = (ρ2VS2(p2VS22-1)½)/(ρ1VS1(1-p2VS12)½)

differentiation of dispersion relation :
(H/VS1)((1-pn2VS12)½-ωpnVS12(1-pn2VS12)dpn/dω)/cos2(Hω(1-pn2VS12)½/VS1)) = (ρ2VS2)/(ρ1VS1)(1-pn2VS12)(pnVS22(pn2VS22-1)+pnVS12(pn2VS22-1)½/(1-pn2VS12))dpn/dω

dpn/dω = (H/VS1)(1-pn2VS12)/
(HωpnVS1+(ρ2VS2)/(ρ1VS1)cos2(Hω(1-pn2VS12)½/VS1)(pnVS22(pn2VS22-1)+pnVS12(pn2VS22-1)½/(1-pn2VS12)))

Kelly K.R. , 1983, Numerical study of Love wave propagation
Roth M. and K. Holliger, 1999, Inversion of source-generated noise in high-resolution seismic data

Love wave in stratified medium

The dispersion relations can be obtained by stacking layers of thickness hi above the interface with the half-space z > 0 where there is total reflection with a phase-shift χ. In each layer, the upgoing and downgoing harmonic waves are prolongated upwards by a vertical phase-shift ±kizhi. If the upper surface of the layer is the free surface, the total reflection condition gives the Love wave dispersion. If the upper surface of the layer is an interface with another layer, the continuity conditions on displacement uy and stress σyz give the amplitudes of the upgoing and downgoing harmonic waves in the upper layer (the table reads from bottom to top).

z
Ii = ρiVSi2kiz
downgoing wave ekizz
kiz = ω(1/VSi2-p2)½
upgoing wave e-ikizz continuity of uy and σyz at interface
total reflection if free surface (upgoing = downgoing) : dispersion relation
-(h3+h2+h1)
layer 3
D3e-ik3zh3 = D3(a3-ib3) M3eik3zh3 = M3(a3+ib3) A3b3+a3B3 = 0
tan(k3zh3)+(I2/I3)tan(k2zh2)+((I1/I3)-(I1/I2)tan(k3zh3)tan(k2zh2))tan(k1zh1+χ/2) = 0
-(h2+h1)
layer 3
D3 = A3-iB3 M3 = A3+iB3 A3 = A2a2-B2b2 = a1a2-(I1/I2)b1b2
B3 = (I2/I3)(A2b2+B2a2) = (I2/I3)a1b2+(I1/I3)b1a2
-(h2+h1)
layer 2
D2e-ik2zh2 = D2(a2-ib2) M2eik2zh2 = M2(a2+ib2) A2b2+a2B2 = 0
tan(k2zh2)+(I1/I2)tan(k1zh1+χ/2) = 0
-h1
layer 2
D2 = A2-iB2 M2 = A2+iB2 A2 = a1
B2 = (I1/I2)b1
-h1
layer 1
D1e-ik1zh1 = a1-ib1 M1eik1zh1 = a1+ib1 b1 = 0
sin(k1zh1+χ/2) = 0
0
layer 1
D1 = e-iχ/2 M1 = eiχ/2 χ(p) = -2Arctan(ρVS(p2VS2-1)½1VS1(1-p2VS12)½) = -2Arctan(I/I1)
> 0
1/2 space
evanescent wave e-kzz
kz = |ω|(p2-1/V2)½

Cylindrical waves

In the case of cylindrical symetry, harmonic solutions of the wave equation are expressed in terms of Bessel et Hankel functions of order n = 0,1,2... where n corresponds to the azimutal variation einθ.
For krr>>1, they are similar to sinusoids with amplitudes decreasing as (1/r)½.

fonctions Bessel

Bessel equationsolutionderivative
r2d2f/dr2+rdf/dr+ (kr2r2-n2)f(r) = 0 f(r) = Hn(krr) = Jn(krr)+iYn(krr) ≈ (2/πkrr)½ei(krr-π/4-nπ/2)

Hn(ikrr) ≈ i-(n+1)(2/πkrr)½e-krr

dHn(krr)/dr = krHn-1(krr)-(n/r)Hn(krr) = (n/r)Hn(krr)-krHn+1(krr)

In the absence of azimutal variation, the displacement potentials for P et S waves are :

Δφ(r,z) = ∂2φ/∂r2+(1/r)∂φ/∂r+∂2φ/∂z2 = (1/VP2)∂2φ/∂t2 φ(r,z) = f(r)ei(kzz-ωt) kp2 = ω2/VP2-kz2 f(r) = AH0(kpr)
Δψθ(r,z) = (1/VS2)∂2ψθ/∂t2 ψθ(r,z) = g(r)ei(kzz-ωt) ks2 = ω2/VS2-kz2 g(r) = BH1(ksr)

If there is an angular variation with θ, one has :

Δφ(r,θ,z) = Δφ(r,z) + (1/r)22φ/∂θ2 = (1/VP2)∂2φ/∂t2 φ(r,θ,z) =f(r)cos(nθ)ei(kzz-ωt) kp2 = ω2/VP2-kz2 f(r) = AHn(kpr)
Δψr(r,θ,z) = (1/VS2)∂2ψr/∂t2 ψr(r,z) = g(r)sin(nθ)ei(kzz-ωt) ks2 = ω2/VS2-kz2 g(r) = BHn+1(ksr)
Δψθ(r,θ,z) = (1/VS2)∂2ψθ/∂t2 ψθ(r,z) = -g(r)cos(nθ)ei(kzz-ωt)
Δψz(r,θ,z) = (1/VS2)∂2ψz/∂t2 ψz(r,z) = h(r)sin(nθ)ei(kzz-ωt) h(r) = CHn(ksr)

Displacements and strains on the wall of a cylindrical borehole

ur = cos(nθ) uθ = sin(nθ) uz = cos(nθ) εrr = cos(nθ) ε = sin(nθ) εrz = cos(nθ)
Aei(kzz-ωt) n/rHn(kpr)-kpHn+1(kpr) -n/rHn(kpr) ikzHn(kpr) (n(n-1)/r2-kp2)Hn(kpr)+kp/rHn+1(kpr) -n(n-0.5)/r2Hn(kpr)+nkp/rHn+1(kpr) ikz(n/rHn(kpr)-kpHn+1(kpr))
Bei(kzz-ωt) ikzHn+1(ksr) ikzHn+1(ksr) -ksHn(ksr) ikz(ksHn(ksr)-(n+1)/rHn+1(ksr)) ikz(ks/2Hn(ksr)-(n+1)/rHn+1(ksr)) (-nks/rHn(ksr)+(ks2-kz2)Hn+1(ksr))/2
Cei(kzz-ωt) n/rHn(ksr) -n/rHn(ksr)+ksHn+1(ksr) 0 n(n-1)/r2Hn(ksr)-nks/rHn+1(ksr) (-n(n-1)/r2+ks2/2)Hn(ksr)-ks/rHn+1(ksr) (ikzn/2r)Hn(ksr)

The P and S solutions in cylindrical coordinates are developped in : Sinha, B.K., E. Simsek, and S. Asvadurov, 2009 Influence of a pipe tool on borehole modes

P et S waves from a point force

Without body forces, the 3 equilibrium equations expressed in terms of the components of the particle displacement are :
ρ∂2u/∂t2 = (λ+μ)graddivuΔu where Δu = (Δux, Δuy, Δuz) = grad(divu)-curl(curl(u))

The P wave equation, ∂2φ/∂t2 = VP2Δφ, is obtained from these 3 equations by writing u = gradφ. Indeed, Δgradφ = gradΔφ as curl(gradφ) = 0. Therefore, ρgrad2φ/∂t2 = (λ+2μ)grad(Δφ).
The S wave equation, ∂2ψ/∂t2 = VS2Δψ, is obtained from these 3 equations by writing u = curlψ with divψ = 0. Indeed, Δcurlψ = -curlcurlcurlψ = curlΔψ as divcurlψ = 0 and divψ = 0. Therefore, ρcurl2ψ/∂t2 = μcurlΔψ.

For a source due to a point force with a module F(t) (N) and a direction e, the force per unit volume (N/m3) is : f = F(t)eδ(x) = -F(t)/(4π)eΔ(1/r) = -F(t)/(4π)Δ(e/r) = -(F(t)/(4π))(graddiv(e/r)-curlcurl(e/r)).
Indeed, ∫δ(x)dx = 1 and ∫Δ(1/r)dx = ∫grad(1/r).dS = (-1/r2)er.4πr2er = -4π imply δ(x) = -1/(4π)Δ(1/r). As e is constant, eΔ(1/r) = Δ(e/r).
In the harmonic case where the module of the force varies as a sinusoid of pulsation ω : F(t) = Fe-iωt.

θ being the angle between the direction e of the force and the radial direction er of propagation of the wave from the point where the force applies, e = cosθer-sinθeθ.
One needs the expression of the
differential operators in spherical coordinates (r,&theta,ξ) : gradφ(r,θ) = &partφ/∂rer+1/r&partφ/∂θeθ and curl(ψ(r,θ)eξ) = (1/r)(1/sinθ∂(sinθψ)/∂θer-∂(rψ)/∂reθ).

The equilibrium equations with the part of the source term producing P waves are : ρgrad2φ/∂t2 = (λ+2μ)grad(Δφ)-(F(t)/(4π)(graddiv(e/r)
The P wave equation becomes : ∂2φ/∂t2 = VP2Δφ-(F(t)/4πρ)div(e/r). It includes a source term proportional to (dive/r) = grad(1/r).e = -1/r2er.e = -cosθ/r2
The amplitude of the displacement potential and of the displacement in the far field is thus proprtional to cosθ.
By writing the particle displacement potential as the divergence of a vector Φ(r)e, one separates the dependency in r et θ.

u = gradφ(r,θ) 2φ/∂t2 = VP2Δφ-(F(t)/4πρ)div(e/r) φ(r,θ) = div(Φ(r)e) 2Φ/∂t2 = VP2ΔΦ-F(t)/(4πρr) 2(rΦ)/∂t2 = VP22(rΦ)/∂r2-F(t)/(4πρ)
F(t) = Fe-iωt, k = ω/VP 2(rΦ)/∂r2+k2(rΦ) = F/(4πρVP2) Φ = F/(4πρVP2k2)(1-eikr)/r φ = gradΦ(r).e = cosθ∂Φ/∂r = -Fcosθ/(4πρVP2k2)((ik-1/r)eikr/r+1/r2)
u = cosθ∂2Φ/∂r2er-1/r∂Φ/∂rsinθeθ = cosθ∂2Φ/∂r2er+1/r∂Φ/∂r(e-cosθer)
u = ( -F/(4πρVP2k2)) ((cosθ(2/r2-2ik/r-k2)er+1/r(ik-1/r)(e-cosθer))eikr/r) -(1/r3)(3cosθer-e))
ucl = Fcosθer/(4πρVP2)eikr/r ucp = -F/(4πρVP2)(e-3cosθer)((i/kr-1/(kr)2)eikr/r+1/r3)

The equilibrium equations with the part of the source term producing S waves are : ρcurl2ψ/∂t2 = μcurlΔψ+(F(t)/(4π))curlcurl(e/r).
The S wave equation becomes : ∂2ψ/∂t2 =VS2Δψ+(F(t)/(4πρ))curl(e/r). It includes a source term proportional to curl(e/r) = grad(1/r)∧e = -(1/r2)er∧e = sinθeξ/r2
The amplitude of the displacement potential and of the displacement in the far field is thus proportional to sinθ.
By writing the particle displacement potential as the curl of a vector Ψ(r)e, one separates the dependency in r et θ.

u = curlψ(r,θ) 2ψ/∂t2 = VS2Δψ+(F(t)/4πρ)curl(e/r) ψ(r,θ) = -curl(Ψ(r)e) 2Ψ/∂t2 = VS2ΔΨ-F(t)/(4πρr) 2(rΨ)/∂t2 = VS22(rΨ)/∂r2-F(t)/(4πρ)
F(t) = Fe-iωt, k = ω/VS 2(rΨ)/∂r2+k2(rΨ) = F/(4πρVS2) Ψ = F/(4πρVS2k2)(1-eikr)/r ψ(r,θ) = -gradΨ(r)∧e = sinθ∂Ψ/∂reξ = -Fsinθeξ/(4πρVS2k2)((ik-1/r)eikr/r+1/r2)
u = (1/r)(2cosθer∂Ψ/∂r-sinθeθ∂(r∂Ψ/∂r)/∂r) = (1/r)(2(e+sinθeθ)∂Ψ/∂r-sinθeθ(∂Ψ/∂r+r∂2Ψ/∂r2))
u = -F/(4πρVS2k2) (1/r)((2(e+sinθeθ)(ik-1/r)-sinθeθ(-rk2-ik+1/r))eikr/r +(1/r2)(2e+3sinθeθ))
ucl = -Fsinθeθ/(4πρVS2)eikr/r ucp = F/(4πρVS2)(e-3cosθer) ((i/kr-1/(kr)2)eikr/r+1/r3)

The contribution of the terms of displacement in the near and far field to the displacement and polarization of P and S waves at distances of the source of the order of the wavelength are illustrated in these figures :
point force : near and far field - point force : P wave - point force : S wave -
force.m

Transverse isotropy

In an anisotropic medium, the characteristics of the seismic waves are more complex : the propagation velocities depend on the direction of propagation, the polarizations of the waves are no longer exactly longitudinal or transverse, the velocities of SH and SV waves are no longer equal (splitting).
A stratified medium made of thin (with respect to the wavelength) isotropic horizontal layers has an anisotropic behaviour similar to a millefeuille pastry : compressed vertically, the layers are in series ; compressed horizontally, the layers are in parallel. Such a composite medium can be replaced by an equivalent homogeneous medium with an anisotropic behaviour characterized by transverse isotropy. The stress-strain relationships involve five elastic coefficients instead of two for the isotropic case.
The coefficients of the equivalent medium can be obtained by considering various stress-strain states allowing the determination of the different series/parallel averages.

isotropic case : 2 elastic coef. λ and μ transverse isotropy (symmetry axis Oz) : 5 elastic coef. example for clays (x109Pa)
σxx = c11εxx+c12εyy+c12εzz
σxy = (c11-c12xy
c11 = λ+2μ , c12 = λ
σxx = c11εxx+c12εyy+c13εzz , σyy = c12εxx+c11εyy+c13εzz
σzz = c13εxx+c13εyy+c33εzz
σyz = 2c44εyz , σzx = 2c44εzx
σxy = 2c66εxy , c66 = (c11-c12)/2
c11 = 45 , c12 = 10 , c13 = 8
c33 = 28
c44 = 11
c66 = (c11-c12)/2 = 17.5

σ , ε applied on thinly stratified medium of thickness H horizontal layers of thicknesses hi, pi = hi/H anisotropic equivalent moduli
layers compressed in series vertically : σzz ≠ 0
without lateral strain : εxx = εyy = 0
σzzi = σzz , εzzi = σzz/(λi+2μi)
εzz = ∑piεzzi = σzz∑pi/(λi+2μi)
σxxi = σyyi = λiεzzi
σzz = c33εzz
c33 = 1/∑pi/(λi+2μi)
layers compressed in parallel horizontaly along x : σxx ≠ 0
without strain along y : εyy = 0
without average vertical strain : εzz = ∑piεzzi = 0
uniform strain along x : εxxi = εxx
σxxi = (λi+2μixxiεzzi
σxx = ∑piσxxi = εxx∑pii+2μi)+∑piλiεzzi [1]
σzzi = σzz , σzz = λiεxx+(λi+2μizzi [2]
[2] ⇒ σzz∑pi/(λi+2μi) = εxx∑piλi/(λi+2μi) + ∑piεzzi = εxx∑piλi/(λi+2μi) [3]
[2,3] ⇒ ∑piλiεzzi = εxx((∑piλi/(λi+2μi))2/∑pi/(λi+2μi)-∑piλi2/(λi+2μi)) [4]
σxx = c11εxx
[1,4] ⇒ c11 = c33(∑piλi/(λi+2μi))2+4∑piμiii)/(λi+2μi)
layers sheared in series horizontally : σyz ≠ 0 σyz = 2μiεyzi
εyz = ∑piεyzi = (σyz/2)∑pii
σyz = 2c44εyz
c44 = 1/∑pii
layers sheared in parallel horizontally : σxy ≠ 0
uniform strain : εxyi = εxy
σxyi = 2μiεxy
σxy = ∑piσxyi = 2∑piμiεxy
σxy = 2c66εxy
c66 = ∑piμi , c12 = c11-2c66
layers compressed in parallel horizontally along x : σxx ≠ 0
without vertical stress : σzz = 0
without strain along y : εyy = 0
uniform strain along x : εxxi = εxx
σxxi = (λi+2μixxiεzzi
σzzi = σzz = 0 , λiεxx+(λi+2μizzi = 0
εzz = ∑piεzzi = -εxx∑piλi/(λi+2μi)
σzz = c13εxx+c33εzz = 0
c13 = c33(∑piλi/(λi+2μi))

Here is a plot of these different strain-stress states and the equivalent elastic moduli obtained for a stratification with an equal proportion of slow and fast layers :
modules anisotropes équivalents
anisomod.m

plane SH waves (horizontal polarization) plane quasi-P waves (quasi-longitudinal polarization α : α ≈ θ)
plane quasi-SV waves (quasi-transverse polarization β : β ≈ η-π/2)
uy(x,z,t) = Uyei(kxx+kzz-ωt)
ρω2 = (c66kx2+c44kz2)
the dispersion is an ellipse with semi-axes (c66/ρ) and (c44/ρ)
u(x,z,t) = (Ux,0,Uz)ei(kxx+kzz-ωt)
ρω2Ux = (c11kx2+c44kz2)Ux+(c13+c44)kxkzUz
ρω2Uz = (c13+c44)kxkzUx+(c44kx2+c33kz2)Uz
(ρω2-c11kx2-c44kz2)(ρω2-c44kx2-c33kz2)-((c13+c44)kxkz)2 = 0
VSH2 = (1/ρ)(c66sin2η+c44cos2η) VQP2 = (1/2ρ)(c44+c11sin2θ+c33cos2θ+D)
VQS2 = (1/2ρ)(c44+c11sin2θ+c33cos2θ-D)
D2 = ((c11-c44)sin2θ-(c33-c44)cos2θ)2+(c13+c44)2sin2
tanα = (c13+c44)sin2θ/2(ρVQP2-c11sin2θ-c44cos2θ) = (c13+c44)sin2θ/((c44-c11)sin2θ+(c33-c44)cos2θ+D)
tanβ = (c13+c44)sin2θ/2(ρVQS2-c11sin2θ-c44cos2θ) = (c13+c44)sin2θ/((c44-c11)sin2θ+(c33-c44)cos2θ-D)
tanα.tanβ = ((c13+c44)sin2θ)2/(((c44-c11)sin2θ+(c33-c44)cos2θ)2-D2) = -1 ⇒ β = α-π/2
group velocity ⇔ stationnary phase in ∫∫U(kx,kz)ei(kxx+kzz-ω(kx,kz)t)dkxdkz in order to get constructive interferences of harmonic waves in (x,z,t)
∂(kxx+kzz-ω(kx,kz)t)/∂kx = 0 , x-(∂ω/∂kx)t = 0 , VGx = ∂ω/∂kx
∂(kxx+kzz-ω(kx,kz)t)/∂kz = 0 , z-(∂ω/∂kz)t = 0 , VGz = ∂ω/∂kz
VG = gradkω(kx,kz) ⇒ ek.VG = ek.gradkω(kx,kz) = dω/dk = Vphase ⇒ VG ≥ Vphase
VGx = (c66/ρω)kx , VGz = (c44/ρω)kz
VG2 = (1/ρ2ω2)((c66kx)2+(c44kz)2)
sinηg = VGx/VG = (c66kx)/((c66kx)2+(c44kz)2)½
cosηg = VGz/VG = (c44kz)/((c66kx)2+(c44kz)2)½
VG2 = 1/(ρ(sin2ηg/c66+cos2ηg/c44))
VGx = ∂(kV)/∂kx = V∂k/∂kx+k∂V/∂kx
k = (kx2+kz2)½ , ∂k/∂kx = kx/k = sinθ
kx = ksinθ , 1 = ∂k/∂kxsinθ+kcosθ∂θ/∂kx , ∂θ/∂kx = cosθ/k
VGx = Vsinθ+cosθdV/dθ , VGz = Vcosθ-sinθdV/dθ
VG2 = V2+(dV/dθ)2
tanθg = VGx/VGz = (tanθ+(1/V)dV/dθ)/(1-(tanθ/V)dV/dθ)
Thomsen anisotropy parameters used in the processing of seismic reflection data : αT , βT , γT , δT , εT
η = 0 , VSH2 = c44/ρ = βT2 , η = 90° , VSH2 = c66
γT = (VSH2(90)-VSH2(0))/2VSH2(0) = (c66-c44)/2c44
VSH2 = βT2((c66/c44)sin2η+cos2η) = βT2(1+2γTsin2η)
VG2 = βT2((1+2γT)/(1+2γTcos2ηg))
θ = 0 , D = (c33-c44) , VQP2 = c33/ρ = αT2 , VQS2 = c44/ρ = βT2
θ = 90° , D = (c11-c44) , VQP2 = c11/ρ , VQS2 = c44/ρ = βT2
εT = (VQP2(90)-VQP2(0))/2VQP2(0) = (c11-c33)/2c33
δT = (1/2αT)(d2VQP/dθ2)(0) = ((c13+c44)2-(c33-c44)2)/(2c33(c33-c44))
example for clays (ρ=2380 kg/m3) : αT = 3.43 km/s, βT = 2.15 km/s , γT = 0.3 , δT = 0.07 , εT = 0.3
weak anisotropy
γT<<1 , γT ≈ (VSH(90)-VSH(0))/VSH(0)
VSH ≈ βT(1+γTsin2η)
εT<<1 , δT<<1 , εT ≈ (VQP(90)-VQP(0))/VQP(0)
VQP ≈ αT(1+δTsin2θcos2θ+εTsin4θ) = αT(1+δTsin2θ+(εTT)sin4θ)
VQS ≈ βT(1+(αT2T2)(εTT)sin2θcos2θ)

Here are the phase and group velocities and the polarizations obtained with the values of the above table, and also groups of SH et QP waves for different ranges of phase angles :
vitesses anisotropes- onde SH anisotrope - onde QP anisotrope
anisopro.m

To compute the QP-QSV reflection-transmission coefficients, the components of particle motion are written as a function of the polarization angle α for the QP waves and of the angle β = QSV polarization angle + π/2 for the QS waves (same as in the isotropic case). Snell's law still applies but it does not give explicitely the different incidence angles since velocities depend on these angles. The dispersion relation provides the angles θ(p) and η(p), or more generally kzP = ωqP(p) and kzS = ωqS(p), wich are imaginary for evanescent waves.

Snell's law : p = sinθ1/VQP11) = sinθ2/VQP22) = sinη1/VQS11) = sinη2/VQS22) ;
qP1(p) = (cosθ1/VQP1)(p) ; qP2(p) = (cosθ2/VQP2)(p) ; qS1(p) = (cosη1/VQS1)(p) ; qS2(p) = (cosη1/VQS2)(p) ;
Dispersion relation : (ρ-c11p2-c44q2)(ρ-c44p2-c33q2)-((c13+c44)pq)2 = 0
Aq4+Bq2+C = 0 ; A = c33c44 ; B = -c33(ρ-c11p2)-c44(ρ-c44p2)-(c13+c44)2p2 ; C = (ρ-c11p2)(ρ-c44p2) ; Δ = (B2-4AC)½
qP = ((-B-Δ)/2A)½ ; qS = ((-B+Δ)/2A)½ ;
Polarization : α = Arctan((c13+c44)pqP/(ρ-c11p2-c44(qP)2)) ; β = π/2+Arctan((c13+c44)pqS/(ρ-c11p2-c44(qS)2))
QP incident downgoing + reflected upgoing
UI = (sinα1,cosα1) , URP = RP(sinα1,-cosα1)
kzI = ωqP1(p) , kzRP = -ωqP1(p)
QSV reflected upgoing
URS = RS(cosβ1,sinβ1)
kzRS = -ωqS1(p)
QP transmitted downgoing
UTP = TP(sinα2,cosα2)
kzTP = ωqP2(p)
QSV transmitted downgoing
UTS = TS(-cosβ2,sinβ2)
kzTS = ωqS2(p)
Ux = sinα1(1+RP)+ cosβ1RS = sinα2TP-cosβ2TS
Uz = cosα1(1-RP)+ sinβ1RS = cosα2TP+ sinβ2TS
Σzz = (c13sinα1p+c33cosα1qP1)(1+RP) + (c13cosβ1p-c33sinβ1qS1)RS = (d13sinα2p+d33cosα2qP2)TP + (-d13cosβ2p+d33sinβ2qS2)TS
Σzx = c44(sinα1qP1+cosα1p)(1-RP) + c44(-cosβ1qS1+sinβ1p)RS = d44(sinα2qP2+cosα2p)TP + d44(-cosβ2qS2+sinβ2p)TS
écriture matricielle : AR = B ; R = [RP , RS , TP , TS]t ; B = [-sinα1 , -cosα1 , -(c13sinα1p+c33cosα1qP1) , c44(sinα1qP1+cosα1p)]t
Asinα1cosβ1-sinα2cosβ2
-cosα1sinβ1-cosα2-sinβ2
(c13sinα1p+c33cosα1qP1) (c13cosβ1p-c33sinβ1qS1) - (d13sinα2p+d33cosα2qP2) (d13cosβ2p-d33sinβ2qS2)
c44(sinα1qP1+cosα1p) c44(cosβ1qS1-sinβ1p) d44(sinα2qP2+cosα2p) d44(-cosβ2qS2+sinβ2p)

Here are the coefficients computed for an interface between a slow isotropic medium and a fast transverse isotropic medium in the case where a P wave is incident in the isotropic medium :
coefficients de reflection-transmission anisotropes
anisopro.m

Winterstein D.F. and G. S. De, 2001, VTI documented document the effect of transverse isotropy on S waves recorded in a 9-component vertical seismic profile.
Johnston, J. E. and Christensen, N. I. 1995, Seismic anisotropy of shales measure phase and group velocities in shales.
Godfrey, N.J. ; Christensen, N. I. and Okaya, D.A. 2000, Anisotropy of schists: Contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations.

Attenuation

displacement
equilibrium eq.
cinetic energy density (Jm-3) elastic energy density (Jm-3) power density Pt (Wm-2) intensity I (Wm-2)
u(x,t)
ρ∂2u/∂t2 = ∂σ/∂x
wc = (ρ/2)(∂u/∂t)2
∂wc/∂t = (∂σ/∂x)(∂u/∂t)
we = ∫σdε = (E/2)ε2
∂we/∂t = σ∂/∂x(∂u/∂t)
∂(wc+we)/∂t = ∂/∂x(σ∂u/∂t)
Pt = -σ∂u/∂t
(1/T)∫0TPtdt
u(x,t) = Ucos(kx-ωt) wc = (ρ/2)ω2U2sin2(kx-ωt) we = (ρ/2)V2k2U2sin2(kx-ωt) Pt = ρVω2U2sin2(kx-ωt) = V(wc+we) (ρ/2)Vω2U2
u = gradφ(x,t)
ρ∂2u/∂t2 = -gradp
wc = (ρ/2)(∂u/∂t)2
∂wc/∂t = -gradp.∂u/∂t
we = (K/2)(divu)2
∂we/∂t = -pdiv∂u/∂t
∫dx∂(wc+we)/∂t = -∫dxdiv(p∂u/∂t) = -∫(p∂u/∂t).dS
Pt = p∂u/∂t
(1/2)ℜ(p∂u*/∂t)

2π/quality factor = energy dissipated per cycle / maximum elastic energy cycle = λ amplitude displacement complex velocity VQ = V(1-i/2Q)
2π/Q = -(δw)cycle/wmax π/Q = -(dU/dx)λ/U U(x) = Ue-αx
α = π/Qλ = k/2Q = ω/2QV
u(x,t) = Ue-αxcos(kx-ωt) u(x,t) = Ue-αxeiω(x/V-t) = Ueiω(x(1+i/2Q)/V-t)
u(x,t) = Ueiω(x/VQ-t)

linear viscoelasticity energy dissipated per cycle maximum elastic energy qualty factor
σ = σmcos(ωt+χ)
ε = εmcosωt
(δw)cycle = ∫0Tσdε = πσmεmsinχ wmax = ∫0T/4σdε ≈ -(1/2)σmεmcosχ 1/Q = tanχ ≈ χ

viscoelastic model , elastic modulus E , viscosity η complex wavenumber k+iα weak attenuation , 1/Q << 1 1/Q < 1 , dispersion V(ω) = ω/k
E and η in parallel, relaxation time τ = η/E
σ = Eε+η∂ε/∂t = E(1-iωτ)ε = Mε
M = E(1+ω2τ2)½e-iχ , 1/Q = tanχ = ωτ
ρ∂2u/∂t2 = E(1-i/Q)∂2u/∂x2
ρω2 = E(1-i/Q)(k+iα)2 , k02 = ρω2/E
k02 = (1-i/Q)(k+iα)2
k+iα = k0(1+i/2Q)
k = k0 , V = V0 = ω/k0
α = k0/(2Q) = ω2τ/(2V0)
k22 = k02/(1+1/Q2)½ ≈ k02(1-1/2Q2)
k22 = k02/(1+1/Q2) ≈ k02(1-1/Q2)
V(ω) ≈ V0(1+3/(8Q2)) = V0(1+3ω2τ2/8) , α = k0/(2Q)
(E and η in parallel) in series with E' , σ = M''ε
1/M'' = 1/M+1/E' = 1/E(1-iωτ)+1/E' = (1/E+1/E'-iωτ/E')/(1-iωτ)
1/E'' = 1/E+1/E' , τ'' = τE''/E' , M'' = E''(1-iωτ)/(1-iωτ'') = ||M''||e-i(χ-χ'')
1/Q = tan(χ-χ'') = ω(τ-τ'')/(1+ω2ττ'')
d(1/Q)/dω = 0 pour ωr = (ττ'') and (1/Q)max = (τ-τ'')/2(ττ'')½
ρω2 = M''(k+iα)2 , k''02 = ρω2/E''
k22 = ρω2/||M''|| = k''02(1+ω2τ''2)½/(1+ω2τ2)½
k22 = ρω2ℜ(1/M'') = k''02(1+ω2ττ'')/(1+ω2τ2)
k2 = ω2/V(ω)2 = (k''02/2)((1+ω2τ''2)½/(1+ω2τ2)½+(1+ω2ττ'')/(1+ω2τ2))

constant Q model (Kjartansson, 1979, JGR, 84, 4737)
M = M0(iω/ω0) = M0(|ω/ω0|)eiπγsign(ω)
1/Q = tan(πγ)
ρω2 = M0(|ω/ω0|)eiπγsign(ω)(k+iα)2
k22 = k02(|ω/ω0|)-2γ
k22 = k02(|ω/ω0|)-2γcos(πγ)
k = k0(|ω/ω0|)cos(πγ/2)
V(ω) = V0(|ω/ω0|)γ/cos(πγ/2)
α = k0(|ω/ω0|)sin(πγ/2) = ktan(πγ/2)
dispersion pour 1/Q << 1
V(ω)/V0 ≈ (|ω/ω0|)1/πQ = eLog(|ω/ω0|)/πQ
V(ω)/V0 ≈ 1+Log(|ω/ω0|)/πQ

Poroelasticity and velocities in fluid saturated rocks

La porosité Φ est la proportion volumique d'espace poreux ΩΦ dans un volume élémentaire Ω. Seuls les pores interconnectés dans lesquels un fluide peut s'écouler interviennent dans Φ, qui atteint 30% pour certains grès. Pour une porosité saturée par un fluide, le volume de fluide Ωf est égal au volume des pores. On considère une déformation volumique ε de la roche due à une variation de la pression de confinement -σ. L'augmentation ζ du contenu volumique en fluide est due à l'augmentation du volume des pores and à la compression volumique du fluide.

Φ = ΩΦ/Ω = Ωfε = δΩ/Ω ζ = (δΩΦ-δΩf)/Ω = Φ(δΩΦΦ-δΩff) = Φ(εΦf)

La théorie de la poroélasticité linéaire isotrope exprime ε and ζ comme une combinaison linéaire de σ and pf , la variation de pression de fluide dans les pores. La signification des coefficients de proportionnalité α (coefficient de Biot-Willis) and B (coefficient de Skempton) apparaît en considérant les cas d'une roche drainée (pression de fluide constante, incompressibilité K), non-drainée (contenu en fluide constant, incompressibilité Ksat) and d'une pression différentielle nulle (pressions de confinement and de fluide égales). Dans ce dernier cas, la déformation homogène est celle de la roche sans pore d'incompressibilité K0 and la déformation volumique εΦ des pores est égale à la déformation volumique ε de la roche : on obtient ainsi la relation de Gassmann entre Ksat, K0 , K , Kf (l'incompressibilité du fluide) and Φ. Candte relation permet de déterminer la vitesse de propagation des waves de compression dans les roches poreuses saturées en fluide à basse frequency (f < 100Hz).

poroélasticité linéaire ε = (1/K)(σ+αpf)
ζ = (α/K)(σ+pf/B)
incompressibilité coef. poroélastiques
pf = 0 ε = (1/K)σ K α = ζ/ε
ζ = 0 ε = ((1-αB)/K))σ K = (1-αB)Ksat B = -pf
σ = -pf ε = ((1-α)/K))σ = σ/K0 K = (1-α)K0 .
εΦ = ζ/Φ+εf = ε
εf = -pf/Kf
(α/ΦK)(1-1/B)+1/Kf = 1/K0 1/B = 1-(ΦK/α)(1/K0-1/Kf) = α/(1-K/Ksat)
relation de Gassmann 1/Ksat = (1-α)/K+α/K(1-1/(1-(ΦK/α)(1/K0-1/Kf)))
1/Ksat = 1/K0+Φ/(ΦK/α+1/(1/Kf-1/K0))
1/(1/Ksat-1/K0) = K/α+1/(Φ(1/Kf-1/K0)) = 1/(1/K-1/K0)+1/(Φ(1/Kf-1/K0))
densité and vitesses ρ = (1-Φ)ρ0+Φρf VP2 = (Ksat+4μ/3)/ρ VS2 = μ/ρ

Wang Z., 2001, Fundamentals of seismic rock physics montre comment la relation de Gassmann est utilisée dans l'étude sismique des réservoirs.
Smith, T.M., C. H. Sondergeld, and C. S. Rai, 2003, Gassmann fluid substitutions: A tutorial

1D reflection on a velocity gradient (ρ=cte)

layersparticle motionscontinuity of u and σ on z=0 and z=H
z<0 V=V0 u(z) = eiωz/V0+Re-iωz/V0 1+R = AV0n+BV0m
(iω/V0)(1-R) = a(AnV0n-1+BmV0m-1)

TeiωH/V1 = AV1n+BV1m
(iω/V1)TeiωH/V1 = a(AnV1n-1+BmV1m-1)

⇒ B/A = -V1n-m(n-iω/a)/(m-iω/a)

0≤z≤H V(z)=V0+az -ρω2u(z) = ∂/∂z(ρV(z)2∂u/∂z)
u(z) = A(V0+az)n+B(V0+az)m
n,m = -1/2±(1/4-ω2/a2)½
n-m = 2(1/4-ω2/a2)½
z>H V=V1 u(z) = Teiωz/V1
reflection sur gradient vitesse R = -(V0n-m-V1n-m)/((n+iω/a)/(n-iω/a)V0n-m-(m+iω/a)/(m-iω/a)V1n-m) = 1/(2iω/a+(n-m)(V0n-m+V1n-m)/(V0n-m-V1n-m))

Chapman, N.R., J. F. Gandtrust, R. Walia, D. Hannay, G. D. Spence, W. T. Wood, and R.D. Hyndman , 2002, High-resolution, deep-towed, multichannel seismic survey of deep-sea gas hydrates off western Canada

Reflection-transmission of a monochromatic wave on a layer or a stratified medium

The reflection (transmission) of a monochromatic plane SH wave on (through) a layer of thickness H within a homogeneous space is made of interferences between the primary reflection (transmission) when the incident wave enters the layer and the multiple reflections that propagate out of the layer . If Re and Te=(1+Re) are the reflection and transmission coefficients when entering the layer, Rs=(-Re) and Ts=(1-Re) when leaving the layer, and kz the vertical wavenumber in the layer, RH and TH are the sum of the series of successive multiples. If Re<<1, only the first term of the series is significant in amplitude :

RH1 = Re+1 reflection in layer , Re<<1 , TeTs = 1-Re2 ≈ 1 RHn = Re+n reflections in layer , RH = RHn (n→∞) RH1 , RH , TH1, TH
RH1 = Re+TeeikzHRseikzHTs = Re(1-(1-Re2)e2ikzH) ≈ Re(1-e2ikzH)
RH1 = 0 pour kzH=nπ or λz = 2H/n
RH1 = 2Re pour kzH=(2n+1)π/2 or λz = 4H/(2n+1)
RHn = Re+TeRsTse2ikzH(1+∑(RseikzH)2n)
RH = Re(1-(1-Re2)e2ikzH/(1-Re2e2ikzH)) = Re(1-e2ikzH)/(1-Re2e2ikzH)
reflection sur une couche
TH1 = TeeikzHTs = (1-Re2)eikzH ≈ eikzH THn = TeeikzHTs(1+∑(RseikzH)2n)
TH = (1-Re2)eikzH/(1-Re2e2ikzH)

Alternatively, one may consider one upgoing wave (sum of all upgoing waves in the layer) and one downgoing wave (sum of all downgoing waves in the layer). The upgoing and downgoing waves in 2 layers having a common interface are linked by continuity conditions. By using iteratively these conditions from the bottom to the top of the stratification, one gets the reflection-transmission coefficients on the stratification. By computing these coefficients for different frequencies, one gets the seismic trace in time by inverse Fourier transform. To take into account the free surface (R = 1), the upgoing reflected wave is sent back in the stratification. This is done iteratively to take into account multiple reflections on the free surface.

layer
Rinterface
downgoing waves downgoing
Dj = Tj+1Dj+1eikzjhj-Rj+1Mje2ikzjhj
Dj+1 = (Dje-ikzjhj+Rj+1Mjeikzjhj)/Tj+1
upgoing waves
Mj+1 = Rj+1Dj+1+(1-Rj+1)Mjeikzjhj
Mj+1 = (Rj+1Dje-ikzjhj+Mjeikzjhj)/Tj+1
reflection coef. on stratification
Rh1..j = Mj+1/Dj+1
Rj+1 = (Rh1..je-ikzjhj-Rh1..j-1eikzjhj)/(e-ikzjhj-Rh1..j-1Rh1..jeikzjhj)
transmission coef. on stratification
Th1..j = D0/Dj+1
layer 3
R3
D3 = (e-ikz2h2+R3Rh1eikz2h2)D2/T3 M3 = (R3e-ikz2h2+Rh1eikz2h2)D2/T3 Rh12 = M3/D3
R3 = (Rh12e-ikz2h2-Rh1eikz2h2)/(e-ikz2h2-Rh1Rh12eikz2h2)
Th12 = D0/D3 = Th1D2/D3
layer 2
R2
D2 = (e-ikz1h1+R2R1eikz1h1)D1/T2 M2 = (R2e-ikz1h1+R1eikz1h1)D1/T2 Rh1 = M2/D2
R2 = (Rh1e-ikz1h1-R1eikz1h1)/(e-ikz1h1-R1Rh1eikz1h1)
Th1 = D0/D2 = T1D1/D2
layer 1
R1
D1 M1 R1 = M1/D1 T1 = D0/D1
1/2 space D0 M0 = 0 upgoing+downgoing
stratif.m

For P-SV waves, there are two upgoing and two downgoing waves in each layer (φ and ψy potentials)

downgoing P and SV waves
DPj = (TPPj+1DPj+1+TSPj+1DSj+1+RPPj+1MPjeikzPjhj+RSPj+1MSjeikzSjhj)eikzPjhj
DSj = (TPSj+1DPj+1+TSSj+1DSj+1+RPSj+1MPjeikzPjhj+RSSj+1MSjeikzSjhj)eikzSjhj
upgoings P and SV waves
MPj+1 = RPPj+1DPj+1+RSPj+1DSj+1+TPPj+1MPjeikzPjhj+TSPj+1MSjeikzSjhj
MSj+1 = RPSj+1DPj+1+RSSj+1DSj+1+TPSj+1MPjeikzPjhj+TSSj+1MSjeikzSjhj
(TPPj+1TSSj+1-TPSj+1TSPj+1)DPj+1

(TSPj+1TPSj+1-TSSj+1TPPj+1)DSj+1

TSSj+1e-ikzPjhj -TSPj+1e-ikzSjhj (TSPj+1RPSj+1-TSSj+1RPPj+1)eikzPjhj (TSPj+1RSSj+1-TSSj+1RSPj+1)eikzSjhj) DPj
DSj
MPj
MSj
TPSj+1e-ikzPjhj -TPPj+1e-ikzSjhj (TPPj+1RPSj+1-TPSj+1RPPj+1)eikzPjhj (TPPj+1RSSj+1-TPSj+1RSPj+1)eikzSjhj)
MPj+1

MSj+1

RPPj+1 RSPj+1 TPPj+1eikzPjhj TSPj+1eikzSjhj DPj+1
DSj+1
MPj
MSj
RPSj+1 RSSj+1 TPSj+1eikzPjhj TSSj+1eikzSjhj
1 (0)
0 (1)
RPPh1.n (RSPh1.n)
RPSh1.n (RSSh1.n)
DM(4,4) = ∏ transfert matrices in layers 1 à n 1
0
RPP1
RPS1
0
1
RSP1
RSS1
DP1
DS1
liquid-solid case
DPj = (TPPj+1DPj+1+RPPj+1MPjeikzPjhj+RSPj+1MSjeikzSjhj)eikzPjhj
MPj+1 = RPPj+1DPj+1+TPPj+1MPjeikzPjhj+TSPj+1MSjeikzSjhj
1
RPPeau.h1.n
DMliq-sol(2,4) DM(4,4) 1
0
RPP1
RPS1
0
1
RSP1
RSS1
DP1
DS1

Exemples of potentials computed with a density-velocity model and incidence angles in water θ = 0°, 15° and 30° in cases corresponding to land and marine reflection seismics (recording at the surface or at the bottom of the sea).
Modèle vitesses-densité Mer du Nord - Reflection-transmission Mer du Nord - Stratification P-SV incidence 0° - Stratification P-SV incidence 15° - Stratification P-SV incidence 30°
stratifpsv.m

Liu Y. and D. R. Schmitt, 2003, Amplitude and AVO responses of a single thin bed
Chapman, C. H., 2003, Yet another elastic plane-wave, layer-matrix algorithm give a more elaborate program, that can be used for incidence angles larger than the critical value.

Seismic monitoring in a stratified elastic medium

Sesimic monitoring of reservoirs involves measurements repeated in time to detect the changes on traveltimes and amplitudes due to changes in elastic properties. The following example shows the perturbations on P and SV waves traveltimes and amplitudes for a model with a 40 m thick layer à 1000m depth in which the velocity VP decreases from 3200 to 2800 m/s, the other parameters being unchanged.

Modèle vitesses-densité monitoring - Reflection-transmission monitoring - Monitoring P-SV incidence 0° - Monitoring P-SV incidence 15° - Monitoring P-SV incidence 30°
monitorpsv.m

Reflection-transmission of a SH wave on a cyclical stratification

Si l'onde est incidente sur une stratification cyclique constituée d'une alternance régulière de 2 couches telles que les coefficients de reflection-transmission à chaque interface soient alternativement (Re,Te) and (Rs,Ts) , l'effand des reflections multiples de même ordre sur les différentes interfaces est cumulatif. Pour un grand nombre d'interfaces, les modules des termes du coefficient de transmission tenant compte des premiers multiples dans chaque couche sont supérieurs à celui de la transmission directe. En supposant que kzH est le même dans les 2 couches and que la stratification comporte 2m+1 couches (2m+2 interfaces), les premiers termes du coefficient de transmission sont :

1 path with (TeTs)m+1 TS0 = TeeikzHTs∏(eikzHTeeikzHTs) = (1-Re2)m+1e(2m+1)ikzH transmission par stratification
transtrat.m
N1(2m+1) = 2m+1 paths with R2 TS1 = TS0N1(2m+1)Re2e2ikzH
N2(2m+1) = N1(2m+1)+...+N1(1) paths with R4
N1(2m) paths with -R2,TeTs
TS2 = TS0(N2(2m+1)Re4
-N1(2m)(1-Re2)Re2)e4ikzH
N3(2m+1) = N2(2m+1)+...+N2(1) paths with R6
2N2(2m+1)-2 paths with -R4,TeTs
N1(2m-1) paths with R2,(TeTs)2
TS3 = TS0(N3(2m+1)Re6
-(2N2(2m+1)-2)(1-Re2)Re4
+N1(2m-1)(1-Re2)2Re2)e6ikzH
N4(2m+1) = N3(2m+1)+...+N3(1) paths with R8
3N3(2m+1)+N2(2m)-3 paths with -R6,TeTs
3N2(2m+1)-N2(2)-2 paths with R4,(TeTs)2
N1(2m-2) paths with -R2,(TeTs)3
TS4 = TS0(N4(2m+1)Re8
-(3N3(2m+1)+N2(2m)-3)(1-Re2)Re6
+(3N2(2m+1)-N2(2)-2)(1-Re2)2Re4
+N1(2m-2)(1-Re2)3Re2)e8ikzH

Les termes successifs des coefficients de transmission and reflection sont calculables sans avoir à dénombrer tous les trajands possibles en utilisant les récurrences reliant les waves upgoings Mj,n+1 and downgoings Dj,n+1 de part and d'autre de chaque interface j après n+1 reflection-transmissions à celles provenant des interfaces immédiatement au dessus Dj-1,n and en dessous Mj+1,n après n reflection-transmissions. On obtient ainsi les réponses impulsionelle and harmonique complètes de la stratification. Les réponses impulsionnelles en reflection and transmission sont caractérisées par des codas avec une amplitude décroissant exponentiellement. Les réponses harmoniques sont caractérisées par des pics de réflectivité (trous de transmissivité) pour H=(2n+1)λz/4 .

initialisation reflection-transmission on odd interface reflection-transmission on even interface réponses impulsionelle and harmonique stratification
refltranstrat.m
M1,1 = Re , D1,1 = Te
M2,2 = RsTeeikzH , D2,2 = TsTeeikzH
R2n+1 = M1,2n+1 = TsM2,2neikzH
D1,2n+1 = RsM2,2neikzH
M2j+1,2n+1 = (ReD2j,2n+TsM2j+2,2n)eikzH
D2j+1,2n+1 = (TeD2j,2n+RsM2j+2,2n)eikzH
M2j,2n+2 = (RsD2j-1,2n+1+TeM2j+1,2n+1)eikzH
D2j,2n+2 = (TsD2j-1,2n+1+ReM2j+1,2n+1)eikzH
M2m+2,2n+2 = RsD2m+1,2n+1eikzH
T2n+2 = D2m+2,2n+2 = TsD2m+1,2n+1eikzH

Anstey N.A. and R. F. O'Doherty, 2002, Cycles, layers, and reflections: Part 1 explain the origin on reflections in stratified sedimentary basin as an effect of cyclical stratification.
Stewart, R.R., P. D. Huddleston, and T. K. Kan, 1984, Seismic versus sonic velocities: A vertical seismic profiling study explain the difference between local velocity measurements in wells and velocities measured from the surface as an effect of cyclical stratification.

Reflection-transmission relationships for a stratified medium

On obtient des relations entre les coefficients de reflection-transmission pour des waves incidentes par en haut or par en bas sur la stratification en remarquant qu'une inversion du signe du temps inverse le sens de propagation de toutes les waves harmoniques and remplace leurs amplitudes complexes par leurs conjuguées (les randards de phase correspondant au temps de propagation vertical dans la stratification deviennent des avances). La propagation dans la stratification des waves reflecteds and transmitteds auxquelles ce randournement temporel a été préalablement appliqué reconstitue l'onde incidente initiale. En effand, les waves refont le même chemin en sens inverse and arrivent en phase sur les plans limitant la stratification.

SH case incident wave at top (a) incident wave at bottom (b) reversal (a) + propagation reversal (b) + propagation
propagation direction
top 1 Rh 0 th Rh* 1 = RhRh*+thTh* th* 0 = Rhth*+thrh*
bottom Th 0 rh 1 0 = ThRh*+rhTh* Th* 1 = Thth*+rhrh* rh*

Pour le cas d'une couche d'épaisseur H dans un milieu homogène, Re étant le coefficient de reflection SH sur l'interface à l'entrée de la couche, on vérifie :

layer incident wave at top (a) incident wave at bottom (b) reversal (a) + propagation
top 1 Rh = Re(1-e2ikzH)/(1-Re2e2ikzH) 0 th = Th RhRh*+thTh* = (Re2(1-e2ikzH)(1-e-2ikzH)+ (1-Re2)2) /((1-Re2e2ikzH)(1-Re2e-2ikzH)) = 1
bottom Th = (1-Re2)eikzH/(1-Re2e2ikzH) 0 rh = Rh 1 ThRh*+rhTh* = Re(1-Re2)(eikzH(1-e-2ikzH)+e-ikzH(1-e2ikzH)) /((1-Re2e2ikzH)(1-Re2e-2ikzH)) = 0

Par ailleurs, les flux d'énergie entrant and sortant de la stratification doivent être égaux.

SH impedance x cos(incidence) incident wave at top incident wave at bottom
energy flux entering outgoing entering outgoing
top : Ia = (ρVScosη)haut Ia IaRhRh* 0 Iathth*
bottom : Ib = (ρVScosη)bas 0 IbThTh* Ib Ibrhrh*
flux conservation Ia(1-RhRh*) = IbThTh* Ib(1-rhrh*) = Iathth*
transmission/reflection relations thTh* = 1-RhRh* = 1-rhrh* = (Ib/Ia)ThTh* th = (Ib/Ia)Th RhRh* = rhrh*

Si la stratification est limitée par une surface libre, il y a reflection totale sur celle-ci. Pour une onde incidente downgoing, la réponse en reflection de la stratification est renvoyée vers le bas. L'autocorrélation de la réponse en transmission downgoing D dans le demi-espace sous la stratification est proportionnelle à la somme de l'onde incidente, de la réponse en reflection and de sa randournée temporelle. De même, pour une onde incidente upgoing, l'autocorrélation de la réponse en transmission upgoing M dans la couche sous la surface libre est proportionnelle à la somme de l'onde incidente, de la réponse en reflection and de sa randournée temporelle.

incident wave transmission + 1 reflection on free surface autocorrelation reflection + time reversal
downgoing in layer D = Th(1+Rh) DD* = ThTh*(1+Rh)(1+Rh)* = (Ia/Ib)Thth*(1+Rh)(1+Rh)* = (Ia/Ib)(1-RhRh*)(1+Rh)(1+Rh)* DD* ≈ (Ia/Ib)(1+Rh+Rh*)
upgoing in half-space M = th(1+Rh) MM* = thth*(1+Rh)(1+Rh)* = (Ib/Ia)Thth*(1+Rh)(1+Rh)* = (Ib/Ia)(1-RhRh*)(1+Rh)(1+Rh)* MM* ≈ (Ib/Ia)(1+Rh+Rh*)

Scattering of a plane acoustic wave on a free surface with a weak undulation

A free surface with an undulating topography z=h(x) around the plane z = 0 causes a perturbation of the reflection of a plane wave. For a small amplitude undulation, the reflection is the sum of the wave reflected on the horizontal z = 0 plane according to Snell's law and a wave scattered by the undulation. The approximation of the harmonic scattered wave ps(x,z) is obtained from p0(x,z) (the wave propagating in the absence of perturbation) by a series expansion of the boundary condition (pressure = 0) on the undulating interface, by assuming Ps<<P0.

incident+reflected harmonic wave on free surface z=0 pressure = 0 on free surface
z = h(x) = Heikhx
wave = p0 + scattered wave Ps<<P0
kz0H<<1
harmonic wave scattered in θs direction
p0(x,z) = P0eikx0x(e-ikz0z-eikz0z)

p0(x,0) = 0

p(x,h(x)) = 0

p(x,0)+h(x)∂p/∂z(x,0) ≈ 0

p(x,z) = (p0+ps)(x,z)

ps(x,0) = -h(x)∂(p0+ps)/∂z(x,0)

ps(x,0) ≈ -h(x)∂p0/∂z(x,0)

ps(x,0) =Pseikxsx

Ps = -2ikz0HP0

kxs = (kx0+kh)

ps(x,z) = Pseikxsxeikzsz

sinθs = sinθ0+Vkh

kzs = (ω2/V2-kxs2)½

Bibliography and links